首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two dimensional (2D) homonuclear 1H J-resolved (JRES) nuclear magnetic resonance spectroscopy is increasingly used in metabolomics. This approach visualises metabolite chemical shifts and scalar couplings along different spectral dimensions, thereby increasing peak dispersion and facilitating spectral assignments and accurate quantification. Here, we optimise the processing of 2D JRES spectra by evaluating different window functions, a traditional sine-bell (SINE) and a combined sine-bell-exponential (SEM) function. Furthermore, we evaluate different projection methods for generating 1D projected spectra (pJRES). Spectra were recorded from three disparate types of biological samples and evaluated in terms of sensitivity, reproducibility and resolution. Overall, the SEM window function yielded considerably higher sensitivity and comparable spectral reproducibility and resolution compared to SINE, for both 1D pJRES and 2D JRES datasets. Furthermore, for pJRES spectra, the highest spectral quality was obtained using SEM combined with skyline projection. These improvements lend further support to utilising 2D J-resolved spectroscopy in metabolomics.  相似文献   

2.
A simple and robust solvent suppression technique that enables acquisition of high‐quality 1D 1H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well‐established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band‐selective TOCSY, 2D J‐resolved spectroscopy, 2D 1H, 13C heteronuclear single‐quantum correlation spectroscopy (HSQC), 2D 1H, 13C HSQC‐TOCSY, and 2D 1H, 13C heteronuclear multiple‐bond correlation spectroscopy (HMBC). A 1D chemical‐shift‐selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.  相似文献   

3.
The usefulness of computer‐assisted aliasing to secure maximal resolution of signal clusters in 1H‐ and 13C‐NMR spectra (which is essential for structure determination by HMBC 2D NMR spectroscopy) in minimal acquisition time is exemplified by the complete characterization of the two complementary p‐octiphenyls 1 and 2 with complex substitution patterns. The need for digital resolution near 1 Hz/pt to dissect the extensive signal clusters in the NMR spectra of these refined oligomers excluded structure determination under routine conditions. High resolution was secured by exploiting the low signal density in the 13C dimension of HMBC spectra by using computer‐assisted aliasing to maximize signal density. Based on the observed shifts in DEPT and 1H‐decoupled 13C‐NMR spectra of 1 and 2 , computer‐assisted aliasing allowed to reduce the number of required time increments by a factor of 20 to 30 compared to full‐width spectra with identical resolution. Without signal‐to‐noise constraints, this computer‐assisted aliasing reduced the acquisition time for high‐resolution NMR spectra needed for complete characterization of refined oligomers 1 and 2 by the same factor (e.g., from over a day to about an hour). With resolved signal clusters in fully aliased HSQC and HMBC spectra, unproblematic structure determination of 1 and 2 is demonstrated by unambiguous assignment of all C‐ and H‐atoms. These findings demonstrate that computer‐assisted aliasing of the underexploited 13C dimension makes extensive molecular complexity accessible by conventional multidimensional heteronuclear NMR experiments without extraordinary efforts.  相似文献   

4.
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113Cd and 77Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.  相似文献   

5.
Synthesis and characterization of a new Pt(II) complex with the amino acid L-alliin (S-allyl-L-cysteine sulfoxide, C6H11NO3S) are described. Elemental and mass spectrometric analyses of the solid complex are consistent with [PtCl2(alliin)], or [PtCl2(C6H11NO3S)]. 13C nuclear magnetic resonance (NMR), [1H–15N] two dimensional (2D) NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and S atoms. The complex is very soluble in dimethyl sulfoxide. Biological analysis for evaluation of a potential cytotoxic effect of the complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented moderate cytotoxic activity, inducing about 40% cell death at a concentration of 400 μmol ·?L?1.  相似文献   

6.
The interaction of cloxacillin sodium with beta-cyclodextrin (beta-CD) has been studied by several analytical techniques, including (1)H NMR, fluorescence spectroscopy, infrared spectroscopy. In this paper, solid inclusion complex of cloxacillin sodium with beta-CD was synthesized by the coprecipitation method. In addition, the characterization of the inclusion complex has been proved by fluorimetry, infrared spectroscopy and 1D, 2D NMR. The experimental results confirmed the existence of 1:1 inclusion complex of cloxacillin sodium with beta-CD. The formation constant of complex was determined by fluorescence method and (1)H NMR. Spacial configuration of complex has been proposed on 2D NMR technique.  相似文献   

7.
The inclusion complex of a new transition metal ligand, 2,4,9-trithia-tricyclo[3.3.1.13,7]decane-7-carboxylic acid (2,4,9-trithia-adamantane-7-carboxylic acid, TPCOOH) in β-cyclodextrin was studied by 1H NMR, 2D NOESY NMR spectroscopy, host-induced CD spectroscopy, and tandem mass spectrometry. 1H NMR, MS–MS and NOESY data show that the TPCOOH guest forms a 1:1 inclusion complex with the host β-cyclodextrin. The NOESY experiments also show that TPCOOH is oriented in the complex with the thioketal end preferentially located at the larger opening of β-cyclodextrin. The orientation of the guest in the host molecule is also confirmed by the induced CD of the ligand, which shows a positive Cotton effect. An association constant of 660±20?M?1 was determined by 1H NMR titration for the complex at room temperature in D2O.  相似文献   

8.
Two 3,6‐bis(R‐1H‐1,2,3‐triazol‐4‐yl)pyridazines (R=mesityl, monodisperse (CH2 CH2O)12CH3) were synthesized by the copper(I)‐catalyzed azide–alkyne cycloaddition and self‐assembled with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluoroantimonate in dichloromethane. The obtained copper(I) complexes were characterized in detail by time‐dependent 1D [1H, 13C] and 2D [1H‐NOESY] NMR spectroscopy, elemental analysis, high‐resolution ESI‐TOF mass spectrometry, and analytical ultracentrifugation. The latter characterization methods, as well as the comparison to analog 3,6‐di(2‐pyridyl)pyridazine (dppn) systems and their corresponding copper(I) and silver(I) complexes indicated that the herein described 3,6‐bis(1H‐1,2,3‐triazol‐4‐yl)pyridazine ligands form [2×2] supramolecular grids. However, in the case of the 3,6‐bis(1‐mesityl‐1H‐1,2,3‐triazol‐4‐yl)pyridazine ligand, the resultant red‐colored copper(I) complex turned out to be metastable in an acetone solution. This behavior in solution was studied by NMR spectroscopy, and it led to the conclusion that the copper(I) complex transforms irreversibly into at least one different metal complex species.  相似文献   

9.
The interaction of sparfloxacin with HP-beta-cyclodextrin (HP-beta-CD) has been studied by several analytical techniques, including 1H NMR, fluorescence spectroscopy, infrared spectroscopy, thermal analysis and scanning electron microscopy. In this paper, solid inclusion complex of sparfloxacin with HP-beta-CD was synthesized by the coprecipitation method. In addition, the characterization of the inclusion complex has been proved by fluorimetry, infrared, differential scanning calorimetry and 1D, 2D NMR. The experimental results confirmed the existence of 1:1 inclusion complex of sparfloxacin with HP-beta-CD. The formation constant of complex was determined by the fluorescence method and 1H NMR. Spacial configuration of complex has been proposed on 2D NMR technique.  相似文献   

10.
11.
The 1H, 13C correlation NMR spectroscopy utilizes JCH couplings in molecules, and provides important structural information from small organic molecules in the form of carbon chemical shifts and carbon-proton connectivities. The full potential of the 1H, 13C correlation NMR spectroscopy has not been realized in the Chemical Weapons Convention (CWC) related verification analyses due to the sample matrix, which usually contains a high amount of non-related compounds obscuring the correlations of the relevant compounds. Here, the results of the application of 1H, 13C, 31P triple-resonance NMR spectroscopy in characterization of OP compounds related to the CWC are presented. With a set of two-dimensional triple-resonance experiments the JHP, JCH and JPC couplings are utilized to map the connectivities of the atoms in OP compounds and to extract the carbon chemical shift information. With the use of the proposed pulse sequences the correlations from the OP compounds can be recorded without significant artifacts from the non-OP compound impurities in the sample. Further selectivity of the observed correlations is achieved with the application of phosphorus band-selective pulse in the pulse sequences to assist the analysis of multiple OP compounds in mixture samples. The use of the triple-resonance experiments in the analysis of a complex sample is shown with a test mixture containing typical scheduled OP compounds, including the characteristic degradation products of nerve agents sarin, soman, and VX. The viability of the approach in verification analysis is demonstrated in the analysis of the 30th OPCW Proficiency Test sample.  相似文献   

12.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

13.
4,5‐Dihydro‐1,2,3‐oxadiazoles are postulated to be key intermediates in the industrial synthesis of ketones from alkenes, in the alkylation of DNA in vivo, and in the decomposition of N‐nitrosoureas; they are also a subject of great interest for theoretical chemists. In the presented report, the formation of 4,5‐dihydro‐1,2,3‐oxadiazole and the subsequent decay into secondary products have been studied by NMR monitoring analysis. The elusive properties evading characterization have now been confirmed by 1H, 13C, and 15N NMR spectroscopy, and relevant 2D experiments at very low temperatures. Our experiments with suitably substituted N‐nitrosoureas using thallium(I) alkoxides as bases under apolar conditions answer important questions on the existence and the secondary products of 4,5‐dihydro‐1,2,3‐oxadiazole.  相似文献   

14.
The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV–vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV–OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.  相似文献   

15.
NMR spectroscopy and quantum chemical calculations were applied for structural characterization and determination of the preferred stereochemical sequence distribution of the monomer units in the homopolymer chains of poly(butyl-α-cyanoacrylate) nanoparticles. The stereochemical sequence distribution of the monomer units was defined by analysis of their high-resolution 1D 1H and 13C NMR and 2D J-resolved, 1H/13C HSQC and 1H/13C HMBC NMR spectra. The results were verified by employment of B3LYP/6-31G(d) calculations and are consistent with the preferred tendency of polymer chains of PBCN to adopt syndiotactic placements. The proton and carbon chemical shielding were calculated at BPW91/6-31+G(2d,p) level using the GIAO approach and B3LYP/6-31G(d) optimized geometry.  相似文献   

16.
Coordinatively unsaturated metal sites (CUS) play an important role in catalysis by metal-organic frameworks (MOF). Being an intrinsic part of the framework the CUS take the role of acidic sites active in industrially relevant processes such as condensation or oxidation reactions. The key step of such reactions represents the coordination of the reagents to CUS. In MOFs the mechanism of the reagent interaction with CUS is poorly understood. Herein, we characterize the interaction of a widely used acidity probe pyridine with CUS of MIL-100(Al) MOF by means of the 2H solid-state NMR spectroscopy. 2H NMR reveals that pyridine species, which are interacting with CUS and the ones which are coordinated to the Al−OH site, exhibit different motional behavior. 2H NMR line shape as well as T1, T2 relaxation analyses for [D5]pyridine adsorbed in MIL-100(Al) allowed us to perform a detailed characterization of pyridine dynamics in both states including the kinetics of the exchange process between these adsorption states.  相似文献   

17.
The efficiency of two-dimensional homonuclear 1H 1H NOE spectroscopy in characterizing and fully assigning the 1H NMR spectra of several isomers of meso- or ring-substituted deuteroporphyrins is demonstrated. The carbon resonances of the skeleton and the substituents were fully assigned using two-dimensional reverse heteronuclear shift correlation spectroscopy.  相似文献   

18.
Precise assignments of 1H atomic sites and establishment of their through‐bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using 1H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of 1H–1H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure‐shift), particularly, Morris's advanced broadband pure‐shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE‐TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE‐TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band‐selective analog of the broadband PSYCHE‐TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band‐selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE‐PSYCHE‐TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE‐TOCSY. Furthermore, unlike the earlier homonuclear band‐selective decoupling, the BSE‐PSYCHE‐decoupling provides fully decoupled pure‐shift spectra for all the individual chemical sites within the excited band. The BSE‐PSYCHE‐TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The supramolecular complexation of 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrin (TPPS) with heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (TMCD) has been known to be highly specific in aqueous media. In this study, we have used NMR spectroscopy to reveal that this supramolecular system also works even in biologically crowded media such as serum, blood, and urine. A 13C‐labeled heptakis(2,3,6‐tri‐O‐methyl‐13C)‐β‐cyclodextrin (13C‐TMCD) was synthesized and studied using one‐dimensional (1D) HMQC spectroscopy in serum and blood. The 1D HMQC spectrum of 13C‐TMCD showed clear signals due to the 2‐, 3‐, and 6‐O13CH3 groups, whose chemical shifts changed upon addition of TPPS due to quantitative formation of the 13C‐TMCD/TPPS=2/1 inclusion complex in such biological media. The 1H NMR signals of non‐isotope‐labeled TPPS included by 13C‐TMCD were detected using the 13C‐filtered ROESY technique. A pharmacokinetic study of 13C‐TMCD and its complex with TPPS was carried out in mice using the 1D HMQC method. The results indicated that (1) 1D HMQC is an effective technique for monitoring the inclusion phenomena of 13C‐labeled cyclodextrin in biological media and (2) the intermolecular interaction between 13C‐TMCD and TPPS is highly selective even in contaminated media like blood, serum, and urine.  相似文献   

20.
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号