首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, X-ray microfluorescence with the synchrotron radiation technique was applied in the analysis of pigments found in decorative paintings in the sarcophagus of an Egyptian mummy. This female mummy, from the Roman Period, which was embalmed with the arms and legs swathed separately is considered one of the most important pieces of the Egyptian Collection from the National Museum (Rio de Janeiro, Brazil). The measurements were performed at the XRF beamline D09B of the Brazilian Synchrotron Light Laboratory (LNLS), using the white beam and a Si(Li) detector with resolution of 165 eV at 5.9 keV. The possible pigments found in the samples were: Egyptian blue, Egyptian green frit, green earth, verdigris, malachite, ochre, realgar, chalk, gypsum, bone white, ivory black and magnetite. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were applied to the results in order to verify if the samples belong to the same period of a linen wrapping fragment, whose provenance was well established. PACS 07.85.Nc; 07.85.Qe; 78.70.En  相似文献   

2.
Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology. PACS 01.30.Cc; 07.05.Hd; 68.37.Yz; 29.20.Lq; 81.70.Tx  相似文献   

3.
Carbonate rocks play an important role in petroleum geology by acting as reservoir rocks, generators, and even hydrocarbon sealants, accounting for about half of the oil and gas reserves known in the world. The study of these carbonate rocks have become very important in the hydrocarbon exploration scene in Brazil because of they consist in analogous for reservoir rocks of the presalt interval. Thus, the objective of this research was to use X-ray microfluorescence (micro-XRF) and X-ray microtomography analysis, as complementary techniques, in order to characterize samples of carbonate rocks in respect to their structures, textures, mineralogy, and pores. The microtomographic analyses allowed the identification of the horizontal structures as parallel lamination, horizontal, and vertical fractures filled by calcite and biotic constituents (gastropods bioclasts). Different composition of minerals were also identified, as calcite, quartz, feldspars, iron sulfides, and oxides. The porosity (ranges <1 to17%), and the high-density elements could also be quantified, as well as their distribution in each sample. The micro-XRF analysis present a direct relationship with the distribution of minerals that compound carbonate rocks, highlighting some structures, as well as helping to identify trace and minor elements in the carbonates (Mn, Sr, and Mg).  相似文献   

4.
Hydroxyapatite (HA) is largely used as bone graft; it seems to be the most promising synthetic implant material, mainly because of its excellent biocompatibility. The crystallinity, particle and pore size of HA are important characteristics and can be modified by decreasing basic structural form below 100 nm and have evoked a great amount of attention for improving prevention, diagnosis, and disease treatment, besides improving bone repair through the biodegradation of the material. The aim of this study was to investigate bone mineral content in bone samples with nanohydroxyapatite and HA spheres, specially its spatial distribution on bone microarchitecture. Circular bone defects were made in both tibiae of 12 White New Zeland adult rabbits (Oryctolagus cuniculus) and were divided randomly into five groups – blood clot (control group), sintered HA, non‐sintered HA, sintered nanoHA and non‐sintered nanoHA – all materials in spherical shape, to smooth handling and accommodation of the surgical bed, and to minimize inflammatory response. The rabbits were euthanatized according to the experimental period of 1 and 4 weeks after surgery. The samples were evaluated by polarized microscopy as well as X‐ray microfluorescence in order to account the bone mineral content bone‐implant interfaces, through synchrotron radiation. Our results revealed greater newly formed bone area in the non‐sintered materials and control groups, and the used technique showed that the amount of calcium of new bone was consistent with both mature bone and HA spheres. In conclusion, the present findings suggest that HA‐based biomaterials are biocompatible, promote osteoconduction and favored bone repair. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
An X-ray imaging system, which does not require any scans of the sample or an X-ray beam and which, therefore, dramatically reduces the amount of time required, was employed to evaluate combinatorial libraries efficiently. Two-dimensional X-ray fluorescence (XRF) images of an 8 mm × 8 mm area were observed for combinatorial substrates of manganese-cobalt spinel MnCo2O4 and lithium ferrite LiFeO2 via an exposure time of 1-3 s using synchrotron X-rays. Thus, XRF signals from a whole substrate could be observed at once in a short space of time. In order to observe the chemical environment simultaneously for all materials arranged on the substrate, the fluorescent X-ray absorption fine structure (XAFS) was measured by repeating the imaging during the monochromator scans across the absorption edge for metals. This is extremely efficient because XAFS spectra for all materials placed on the common substrate are obtained from only a single energy scan. One can determine the valence numbers, as well as other aspects of the chemical environment of the metal included in each material, from the differences in spectral features and the energy shifts. Hence, combinatorial libraries can be screened very rapidly, and therefore efficiently, using the X-ray imaging system.  相似文献   

6.
The distribution of the chemical elements in plants is closely correlated with biological functions. Micro X-ray fluorescence (μXRF) and X-ray absorption near-edge structure (XANES) spectrometry can be used to determine uptake, translocation, and accumulation of the elements in plants. In this research, μXRF and XANES were applied in studying distribution of the elements in the vegetable and cereal seeds during germination and the mobilization. It was found that (a) the distribution of the elements in the seeds was element specific; (b) K and Ca were mainly located in the embryo. Fe and Zn, as well as Mn and Cu, concentrated near the radicle and new developed root. Most of Pb was located in the new developing root; (c) the organic-Pb complexes functioned as the main components of translocation of Pb in the seeds during germination, and the formation of Pb5(PO4)3Cl and Pb3(PO4)2 in seed and plant tissues was the mechanism of tolerance and detoxification to Pb in plants.  相似文献   

7.
Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.  相似文献   

8.
In this article, we focus on the structural peculiarities of nanosized Fe3O4 in the core-shell nanocomposites obtained by polymerization of conducting polypyrrole shell around Fe3O4 nanoparticles. The local structure of Fe atoms was determined from the Extended X-ray Absorption Fine Structure analysis using our own package computer programs. An X-ray diffraction method that is capable to determine average particle size, microstrains, as the particle size distribution of Fe3O4 nanoparticles is presented. The method is based on the Fourier analysis of a single X-ray diffraction profile using a new fitting method based on the generalized Fermi function facilities. The crystallites size obtained by X-ray diffraction spectra analysis was estimated between 3.2 and 10.3 nm. Significant changes in the first and the second Fe coordination shell in comparison with standard bulk were observed. The global and local structure of the nanosized Fe3O4 are correlated with the synthesis conditions of the core-shell polypyrrole nanocomposites.  相似文献   

9.
Abstract

Wavelength dispersive diffraction studies have been performed using a diamond-anvil pressure cell and bending magnet synchrotron produced radiation. A double-crystal monochromator was used to select 15 and 17 keV photons and a 80 μm diameter collimator was used to restrict the beam entering the pressure cavity. Parallelism between the incident beam and the collimator axis was assisted by computer control of the collimator. The image of the transmitted beam was observed using a Hamamatsu x-ray Vidicon and TV monitor, for this alignment. The diffracted beam was recorded on x-ray film using a double film cassette and exposure times ranged from 6 to 8 hours. Neither the exposure time nor the line width of the diffraction lines was significantly altered by replacement of the incident beam collimator with a slit system.  相似文献   

10.
Single 2000-year-old archaeological fibres from textile fragments excavated in the Cave of Letters in the Dead Sea region were investigated by a combined approach using microscopy (optical and SEM), X-ray microbeam diffraction and X-ray microbeam fluorescence. In comparison with modern reference samples, most of the fibres were identified as wool, some as plant bast fibres (flax). The molecular and supermolecular structure of both keratin (wool) and cellulose (flax) were found completely intact. In many fibres, mineral crystals were intimately connected with the fibres. The fluorescence analysis of the dyed wool textiles suggests the possible use of metal-containing mordants for the fixation of organic dyes. PACS 61.10.Nz; 78.70.En; 81.05.Lg  相似文献   

11.
ABSTRACT

A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated in the case of elemental tantalum. Preliminary results of a comparison between reflective and refractive optics for high temperature measurements in the laser-heated diamond anvil cell are briefly discussed. Finally, the importance of the size and relative alignment of X-ray and laser beams for quantitative X-ray measurements is presented.  相似文献   

12.
The atomic ordering in dendritic and hyper-branched macromolecules has been determined by X-ray diffraction. The approach of the atomic pair distribution function technique has been used due to the lack of 3D periodicity in these polymeric materials. Dendrimers are found to possess a semi-regular structure riddled with nanosize cavities. The cavities are joined into channels connecting dendrimer's surface and core. In contrast, hyper-branched polymers are rather irregular at the atomic scale and with less accessible interior.  相似文献   

13.
Antiferromagnetic domain wall movements in KNiF3 have been observed directly by X-ray topography using synchrotron radiation. Topographs were taken in fields up to 1.3 T at a temperature of 77 K. In contrast to X-ray topography using conventional sources, the apparatus is simple and it is possible to obtain good resolution topographs despite the geometrical limitations imposed by the cryostat and electromagnet. Exposure times were typically 8 seconds when recording on Ilford L4 Nuclear Emulsion plates.  相似文献   

14.
The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.  相似文献   

15.
Structural properties of tetracene thin films grown by vacuum sublimation on a flexible Mylar© substrate have been investigated by means of synchrotron X-ray diffraction. The films are polycrystalline and are made up of crystalline domains oriented with the (0 0 l) planes almost parallel to the substrate and completely misoriented around the surface normal. Two crystallographic phases (α and β thin film phases) have been identified. They differ for the dh k l interplanar spacing, both larger than that of the bulk. As a comparison, results from tetracene films grown on SiO2 have been reported to investigate the different charge transport properties of films grown on Mylar and on SiO2 substrates.  相似文献   

16.
殷宗军  朱茂炎  肖体乔 《物理》2009,38(07):504-510
X射线无损成像技术在古生物化石标本研究领域中应用十分广泛.近几年来,随着技术的不断革新,同步辐射X射线相衬显微断层成像技术(SRX-PC-μCT)也被引入到这一领域.由于同步辐射光源产生的硬X射线具有高亮度、高准直性和高空间相干性等优点,可以实现化石标本高分辨率(亚微米级)的无损三维显微成像,给古生物学的发展带来了新的机遇.文章简要回顾了用于古生物化石标本无损成像技术的发展历程,并在此基础上综述了同步辐射X射线断层显微成像技术在古生物学领域的应用现状和前景.  相似文献   

17.
同步辐射X射线相衬显微CT在古生物学中的应用   总被引:3,自引:0,他引:3  
X射线无损成像技术在古生物化石标本研究领域中应用十分广泛.近几年来,随着技术的不断革新,同步辐射X射线相衬显微断层成像技术(SRX-PC-μCT)也被引入到这一领域.由于同步辐射光源产生的硬X射线具有高亮度、高准直性和高空间相干性等优点,可以实现化石标本高分辨率(亚微米级)的无损三维显微成像,给古生物学的发展带来了新的机遇.文章简要回顾了用于古生物化石标本无损成像技术的发展历程,并在此基础L综述了同步辐射X射线断层显微成像技术在古生物学领域的应用现状和前景.  相似文献   

18.
 在丝阵Z箍缩实验中利用CCD记录X射线辐射功率的1维时空分布图像,对光纤传输效率、图像聚焦、MCP与CCD的耦合效率等因素造成的图像失真进行了处理,利用实验实测的单光纤点扩展图像和光传输效率曲线对辐射功率分布图像进行处理,并修正光纤传输效率以及MCP和CCD间耦合效率不均匀性的影响以还原X射线辐射功率的1维空间分布信息。处理后将图像沿空间积分获得了与X射线功率谱仪相吻合的X射线辐射功率脉冲波形,同时不同发次由两系统得到的X射线波形的前沿之间也表现出了良好的一致性。  相似文献   

19.
在丝阵Z箍缩实验中利用CCD记录X射线辐射功率的1维时空分布图像,对光纤传输效率、图像聚焦、MCP与CCD的耦合效率等因素造成的图像失真进行了处理,利用实验实测的单光纤点扩展图像和光传输效率曲线对辐射功率分布图像进行处理,并修正光纤传输效率以及MCP和CCD间耦合效率不均匀性的影响以还原X射线辐射功率的1维空间分布信息。处理后将图像沿空间积分获得了与X射线功率谱仪相吻合的X射线辐射功率脉冲波形,同时不同发次由两系统得到的X射线波形的前沿之间也表现出了良好的一致性。  相似文献   

20.
Colloidal crystal with long-range ordered structure has attracted great attention for their applications in various fields. Although perfect colloidal crystals have been achieved by some fabrications for utilization, little is known about their exact structures and internal defects. In this study, we use synchrotron radiation (SR) phase-contrast computed tomography (CT) to noninvasively access the internal structure of polystyrene (PS) colloidal crystals in three dimensions (3D). The phase-attenuation duality Paganin algorithm phase retrieval was employed to achieve a satisfactory contrast and outline of the spheres. After CT reconstruction, the positions of individual PS particles and structural defects are identified in three dimensions, and the local crystal structure is revealed. Further quantitative analysis of the void system in colloidal crystal illustrates that single voids can be mostly attributed to tetrahedron void of sphere close packing, but the interconnected voids with large volume induce a sphere volume fraction of 59.39 % that reflects a metastable glass behavior of colloidal crystal arrangement. The void orientation result reveals that the 3D close-packing difficulty mainly lies in the stacking of interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号