首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

2.
Monte-Carlo calculations have been performed for positively charged xenon-argon clusters in the temperature range between 10K and 40K for cluster sizes up ton=27. The argon-argon interaction potential stems from empirical data, the Xe+-Ar potential is determined by ab initio MRD-CI calculations and a semi-empirical treatment of spin-orbit effects. Special stability is found for cluster sizesn=10, 13, 19 and less pronounced forn=23 and 25 fairly independent of the temperature. The geometrical structure of the clusters are given and the construction principle is discussed in light of the interactions among neutral argon atoms and the xenon ion — argon interaction. Comparison with measured mass spectra for mixed rare-gas clusters and [Xen]+ clusters is made and shows a consistent picture for the building principle.  相似文献   

3.
An extended version of the torsional path integral Monte Carlo (TPIMC) method is presented and shown to be useful for studying the conformation of flexible molecules in solvated clusters. The new technique is applied to the hydrated clusters of the 2-amino-1-phenyl-ethanol (APE) molecule. APE + nH2O clusters with n = 0-4 are studied at 100 and 300 K using both classical and quantum simulations. Only at the lower temperature is the hydration number n found to impact the conformational distribution of the APE molecule. This is shown to be a result of the temperature-dependent balance between the internal energy and entropy contributions to the relative conformer free energies. Furthermore, at 100 K, large quantum effects are observed in the calculated conformer populations. A particularly large quantum shift of 30% of the total population is calculated for the APE + 2H2O cluster, which is explained in terms of the relative zero point energy of the lowest-energy hydrated structures for this cluster. Finally, qualitative agreement is found between the reported calculations and recent spectroscopy experiments on the hydrated clusters of APE, including an entropically driven preference for the formation of AG-type hydrated structures and the formation of a water "droplet" in the APE + 4H2O cluster.  相似文献   

4.
Abstract

The exchange kinetics of the lithium ion with cryptand C222 were studied in acetonitrile-nitromethane mixtures by lithium-7 NMR line-shape analysis. In all solvent mixtures used, and over the entire temperature range studied, the chemical exchange of the Li+ ion between the solvated and complexed sites was found to occur via a bimolecular mechanism. The activation parameters Ea, δH?, δS? and δG? for the exchange have been determined. The free energy barrier for the exchange process appears to be nearly independent of the binary mixture composition. The results confirm the preferential solvation of the lithium ion with acetonitrile in the binary mixed solvent systems used.  相似文献   

5.
Excess volumes of mixing for six possible binary combinations of solutions of NaCl, KCl, NaBr and KBr have been determined at constant ionic strengths of 1.000 and 2.000 mol-kg− 1 at 298.15 K using a dilatometer in the water + 1,4-dioxane mixed-solvent system. Pitzer’s ion-interaction model has been utilized to obtain binary and triplet interaction parameters, i.e., θV and ψV. The data were also analyzed by the Friedman Model and it is suggested that interactions between solvated ions are dictated not only by coulombic interactions but also by appreciable asymmetric effects. The data are dependent on the nature of the common ion and do not support Young’s cross-square rule. The deviation from the cross-square rule is considered to arise from preferential solvation of the ions and ion clusters in the mixed-solvent system as reflected by the appreciable contribution of triplet interactions.  相似文献   

6.
An investigation of the energetics of small lithium clusters doped either with a hydrogen or with a fluorine atom as a function of the number of lithium atoms using fixed‐node diffusion quantum Monte Carlo (DMC) simulation is reported. It is found that the binding energy (BE) for the doped clusters increases in absolute values leading to a more stable system than for the pure ones in excellent agreement with available experimental measurements. The BE increases for pure, remains almost constant for hydrogenated, and decreases rapidly toward the bulk lithium for the fluoride as a function of the number of lithium atoms in the clusters. The BE, dissociation energy as well as the second difference in energy display a pronounced odd–even oscillation with the number of lithium atoms. The electron correlation inverts the odd–even oscillation pattern for the doped in comparison with the pure clusters and has an impact of 29%–83% to the BE being higher in the pure cluster followed by the hydrogenated and then by the fluoride. The dissociation energy and the second difference in energy indicate that the doped cluster Li3H is the most stable whereas among the pure ones the more stable are Li2, Li4, and Li6. The electron correlation energy is crucial for the stabilization of Li3H. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The size distribution and molecular structure of water clusters play a critical role in the chemical, biological and atmospheric process. The common experimental study of water clusters in aqueous solution is challenged due to the influence of local Hbonding environments on vibration spectroscopies or vacuum requirements for most mass spectrometry technologies. Here, the time-of-flight secondary ion mass spectrometry (ToF-SIMS) combining with a microfluidic chip has been applied to achieve the in-situ discrimination of the size distribution for water clusters in liquid water at room temperature. The results demonstrated that the presented method is highly system stable, reproducible and accurate. The comparison of heavy water with pure water was made to further demonstrate the accuracy of this technique. These results showed that (H2O)3H+ and (D2O)4D+ are the most dominant clusters in pure and heavy water, respectively. This one water molecule difference in the dominant cluster size may due to the nuclear quantum effects on water’s hydrogen bonded network. It is the first time to experimentally show the size distribution of water clusters over a wide range (n=1–30) for pure (H2O) and heavy (D2O) water from molecular level. This technique provides an achievable method for liquid water, which offers a bridge to close the gap between theoretical and experimental study of water cluster in aqueous solution.  相似文献   

8.
We have applied a recently developed hybrid quantum ring‐polymer molecular dynamics method to the nonadiabatic ps relaxation dynamics in water anion clusters to understand the isotope effects observed in previous experiments. The average relaxation times for (H2O)50? and (D2O)50? were calculated at 120 and 207 fs, respectively, and are comparable to the experimental results. Therefore, we conclude that nuclear quantum effects play an essential role in understanding the observed isotope effects for water anion cluster nonadiabatic dynamics. The nonadiabatic relaxation mechanisms are also discussed in detail. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
A binary ionic liquid (IL) system based on a common cation, N‐methyl‐N‐propylpyrrolidinium (C3mpyr+), and either bis(trifluoromethanesulfonyl)imide (NTf2?) or bis(fluorosulfonyl) imide (FSI?) as the anion is explored over its entire composition range. Phase behavior, determined by DSC, shows the presence of a eutectic temperature at 247 K and composition around an anion ratio of 2:1 (FSI?:NTf2?) with the phase diagram for this system proposed (under the thermal conditions used). Importantly for electrochemical devices, the single phase melting transition at the eutectic is well below ambient temperatures (247 K). To investigate the effect of such anion mixing on the lithium ion speciation, conductivity and PFG–NMR diffusion measurements were performed in both the binary IL system as well as the Li‐NTf2‐containing ternary system. The addition of the lithium salt to the mixed IL system resulted in a decrease in conductivity, as is commonly observed in the single‐component IL systems. For a fixed lithium salt composition, both conductivity and ion diffusion have linear behaviour as a function of the anion ratio, however, the rate of change of the diffusion coefficient seems greater in the presence of lithium. From the application point of view, the addition of the FSI? to the NTf2? IL results in a considerable increase in lithium ion diffusivity at room temperature and no evidence of additional complex ion behaviour.  相似文献   

10.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

11.
The ionic structure and transport properties of amorphous solid polymer electrolytes in the system copolymer of acrylonitrile and butadiene (40 : 60)—lithium hexafluoroarsenate (SPE) is studied in the region of small salt concentrations (up to 0.37 mol dm−3) at 298–368 K. In conditions studied, LiAsF6 is dissociated predominantly to ions. Macroscopic models of ion transport are used to analyze the results of measurements of transport characteristics of SPE. Transport of anions free of the polymer matrix is realized activationlessly and resembles the Stokes drift in viscous media. Transport of cations solvated by electron-donating groups of the polymer turns possible only at temperatures in excess of a critical value (T crit ≈ 333 K), when the statistical mean of molecules in the first coordination sphere of the lithium cation becomes less than four (which is the coordination number for solvation) and requires the overcoming of an energy barrier of ∼6 kJ mol−1. Below T crit, the SPE are unipolar anionic conductors.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 537–545.Original Russian Text Copyright © 2005 by Bushkova, Sofronova, Lirova, Zhukovskii.  相似文献   

12.
The energy of the vibrational mode with spherical symmetry, in which the ionic cores oscillate in the radial direction around the equilibrium geometry (ionic breathing mode) is calculated for trivalent (AlN, 2≤N≤50) and monovalent (NaN, 2≤N≤73; CsN, 2≤N≤74) metallic clusters. The ground-state total energy is calculated using density functional theory, with a spherically averaged pseudopotential to describe the ion–electron interaction and optimizing the geometry by the simulated annealing technique. The energy of the ionic mode is calculated by diagonalization of the dynamical matrix including the electronic relaxation in the linear response approximation. The compressibility and bulk modulus of the metallic cluster are obtained from the energies of the monopole oscillations. These energies present a linear behavior on the inverse of the cluster radius, which is analyzed using a semiclassical liquid drop mass formula for the total energy of the clusters and a scaling model. The values of the vibrational frequencies present electronic shell closing effects for the three metals.©1997 John Wiley & Sons, Inc.  相似文献   

13.
Density functional theory is used to study the atomic and electronic structure of NanKm clusters with up to seventy atoms. The simplifying approximation has been made of replacing the external potential of the ionic background by its spherical average about the cluster centre in the iterative process of solving the Kohn-Sham equations for each geometry tested. The search for the equilibrium geometry is performed by employing steepest descent and simulated annealing techniques. We have found segregation of K to the surface and when the cluster is large enough, a neat stratification of K and Na shells. Those effects (segregation and stratification) do not perturb the electronic magic numbers well known for pure alkali metal clusters. Our results for the atomic structure are rather similar to those reported earlier for NanCsn clusters. We have also studied in a selected case, Na20Cs20, the dependence of the collective electronic excitation spectrum on the segregation and other geometric characteristics of the cluster.  相似文献   

14.
We employ density functional, post‐Hartree–Fock, and quantum Monte Carlo methods to study the electronic structure, geometries, and behavior of positively charged Hm+ clusters with m=3,5,…,17. Their structure consists of a tightly bound H3+ core ion surrounded by successive solvation shells of H2 molecules. For the largest clusters, we propose new geometries. We find that correlated methods yield the stepwise decrease of enthalpies for dissociation of H2 from the clusters observed in experiments. Our best results are obtained by the diffusion Monte Carlo method, and by including finite temperature entropic effects, we are able to reproduce the experimental dissociation enthalpies with an unprecedented accuracy of less than 0.5 kcal/mol. These benchmark results contrast with erroneous predictions discovered in the density functional approaches. Finally, our analysis of the cluster energy surfaces indicates that under quantum and thermal fluctuations, the outer solvation shells will exhibit pronounced fluctional behavior. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 86–95, 2001  相似文献   

15.
In a series of molecular dynamics (MD) runs on (KI)108 clusters, the Born–Mayer–Huggins potential function is employed to study structural, energetic, and kinetic aspects of phase change and the homogeneous nucleation of KI clusters. Melting and freezing are reproducible when clusters are heated and cooled. The melted clusters are not spherical in shape no matter the starting cluster is cubic or spherical. Quenching a melted (KI)108 cluster from 960 K in a bath with temperature range 200–400 K for a time period of 80 ps both nucleation and crystallization are observed. Nucleation rates exceeding 1036 critical nuclei m−3 s−1 are determined at 200, 250, 300, 350, and 400 K. Results are interpreted in terms of the classical theory of nucleation of Turnbull and Fisher and of Buckle. Interfacial free energies of the liquid–solid phase derived from the nucleation rates are 7–10 mJ m−2. This quantity is 0.19 of the heat of transition per unit area from solid to liquid, or about two-thirds of the corresponding ratio which Turnbull proposed for freezing transition. The temperature dependence of σsl(T) of (KI)108 clusters can be expressed as σsl(T)∝T0.34.  相似文献   

16.
PEO-LiClO4-ZSM5复合聚合物电解质 I. 电化学研究   总被引:3,自引:1,他引:3  
首次以“择形”分子筛ZSM5为填料, 通过溶液浇铸法制得PEO-LiClO4-ZSM5全固态复合聚合物电解质(CPE)膜. 交流阻抗实验表明ZSM5的引入可以显著地提高CPE的离子电导率. 利用交流阻抗-稳态电流相结合的方法对CPE的锂离子迁移数进行了测定, 结果表明掺入ZSM5后锂离子迁移数明显升高. ZSM5的含量为10%时, CPE同时具有最高离子电导率1.4×10-5 S•cm-1(25 ℃)和最大锂离子迁移数0.353. PEO-LiClO4-ZSM5/Li电极界面稳定性实验表明PEO-LiClO4-ZSM5复合聚合物电解质在全固态锂离子电池领域具有良好的应用前景.  相似文献   

17.
The impact of nuclear quantum effects on hydrogen bonding is investigated for a series of hydrogen fluoride (HF)n clusters and a partially solvated fluoride anion, F-(H2O). The nuclear quantum effects are included using the path integral formalism in conjunction with the Car-Parrinello molecular dynamics (PICPMD) method and using the second-order vibrational perturbation theory (VPT2) approach. For the HF clusters, a directional change in the impact of nuclear quantum effects on the hydrogen-bonding strength is observed as the clusters evolve toward the condensed phase. Specifically, the inclusion of nuclear quantum effects increases the F-F distances for the (HF)n=2-4 clusters and decreases the F-F distances for the (HF)n>4 clusters. This directional change occurs because the enhanced electrostatic interactions between the HF monomers become more dominant than the zero point energy effects of librational modes as the size of the HF clusters increases. For the F-(H2O) system, the inclusion of nuclear quantum effects decreases the F-O distance and strengthens the hydrogen bonding interaction between the fluoride anion and the water molecule because of enhanced electrostatic interactions. The vibrationally averaged 19F shielding constant for F-(H2O) is significantly lower than the value for the equilibrium geometry, indicating that the electronic density on the fluorine decreases as a result of the quantum delocalization of the shared hydrogen. Deuteration of this system leads to an increase in the vibrationally averaged F-O distance and nuclear magnetic shielding constant because of the smaller degree of quantum delocalization for deuterium.  相似文献   

18.
Ion association and hydration clusters in aqueous lithium borate solution are extremely important to understand some extraordinary properties of lithium borates. In the present work, polyborate distribution in aqueous LiBO2 solution was investigated through Raman and thermodynamics equilibrium analysis. Geometry and stability of hydrated clusters LiB(OH)4(H2O)n up to n = 8 were calculated at the B3LYP/aug-cc-pVDZ level. Three different types of ion association, namely, contact ion pairs (CIP), solvent-shared ion pairs (SIP) and solvent separated ion pairs (SSIP) were obtained; characteristics of all of these stable configurations were determined, and the most stable hydrated clusters were chosen. Then the mechanisms of ion aggregation and crystal nuclei formation in the LiB(OH)4 solution were proposed. The tight four-hydrated sphere of Li+ makes it difficult for the dehydrated form of its first hydration sphere to from a CIP, which is the passible reason that lithium borate always has a large super-saturation degree.  相似文献   

19.
The energy and structural changes of lithium microclusters based on temperature has been investigated by using Molecular-Dynamic simulation Method. Two and three-body interacted semi-empiric potential energy formula that characterized the interaction has been used. It has been calculated that the dissociation of atoms from cluster has started after 1300 K for Li3 and 1350 K for Li4, respectively. Dissociations at the fixed temperatures are very close to the expected values of the lithium metal. Additionally, it has been observed that Li4 microclusters above 1000 K and Li3 clusters above 700 K temperatures have steady structures in two different energy values.  相似文献   

20.
Possible three‐dimensional diffusion pathways of lithium ions in crystalline lithium argyrodites are discussed based on earlier studies of local dynamics and site preferences. The specific Li‐ionic conductivities of the lithium argyrodites Li7PS6 and Li6PS5X (X: Cl, Br, I) and their temperature dependences are measured by impedance spectroscopy using different electron‐blocking and ion‐blocking electrode systems. Measurements were carried out between 160 K and 550 K depending on the respective sample. Bulk and grain boundary contributions and the influence of sample preparation are discussed. Typical values for the ionic conductivities at room temperature are in the range 10–7 to 10–5 S ·  cm–1 and at 500 K between 10–6 and 10–3 S ·  cm–1. Thermal activation energies are in the range 0.16 to 0.56 eV. The electronic conductivity at room temperature was measured by polarization measurements for the samples Li6PS5X (X: Cl, Br) and was shown to be in the order of magnitude of 10–8 S ·  cm–1. Chemical diffusion coefficients of lithium were calculated based on the polarization measurements. For Li6PS5Br a high value of 3.5 × 10–6 cm2 · s–1 was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号