首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let L n denote a linear pentagonal chain with 2n pentagons. The penta-graphene (penta-C), denoted by R n is the graph obtained from L n by identifying the opposite lateral edges in an ordered way, whereas the pentagonal Möbius ring is the graph obtained from the L n by identifying the opposite lateral edges in a reversed way. In this paper, through the decomposition theorem of the normalized Laplacian characteristic polynomial and the relationship between its roots and the coefficients, an explicit closed-form formula of the multiplicative degree-Kirchhoff index (resp. Kemeny's constant, the number of spanning trees) of R n is obtained. Furthermore, it is interesting to see that the multiplicative degree-Kirchhoff index of R n is approximately of its Gutman index. Based on our obtained results, all the corresponding results are obtained for .  相似文献   

2.
The normalized Laplacian makes a great contribution on analyzing the structure properties of nonregular graphs. Let On be a linear octagonal-quadrilateral network. In this article, we first concern the normalized Laplacian spectrum of On based on the decomposition theorem for the corresponding matrices. Then we derive the closed-term formulas of the degree-Kirchhoff index and the number of spanning trees of linear octagonal-quadrilateral networks on the basis of the relations between the roots and coefficients, respectively.  相似文献   

3.
Molybdenum and tungsten iodide clusters with the [M6I8] cluster core show versatile photophysical properties that strongly depend on the nature of six apical ligands (L) in [M6I8L6]2–. In course of our syntheses we report a new efficient preparation of Cs2[Mo6I14] as precursor. Target compounds (nBu4N)2[M6I8(NCO)6] with M = Mo, W with cyanate ligands were synthesized and structurally characterized to study their photophysical properties. (nBu4N)2[M6I8(NCO)6] compounds appear as deep red (Mo) and light yellow (W) crystal powders showing strong phosphorescence. Compared to other cluster compounds of this type there is no significant concentration quenching obtained by the presence of molecular oxygen.  相似文献   

4.
Let G be a graph with n vertices and d i is the degree of its ith vertex (d i is the degree of v i). In this article, we compute the redefined first Zagreb index, redefined second Zagreb index, redefined third Zagreb index, augmented Zagreb index of graphs carbon nanocones CNC k[n], and nanotori [C4C6C8(p,q)]. Also, compute the multiplicative redefined first Zagreb index, multiplicative redefined second Zagreb index, multiplicative redefined third Zagreb index, multiplicative augmented Zagreb index of carbon nanocones CNC k[n], and nanotori [C4C6C8(p,q)].  相似文献   

5.
Let denote a molecular graph of linear [n] phenylene with n hexagons and n squares, and let the Möbius phenylene chain be the graph obtained from the by identifying the opposite lateral edges in reversed way. Utilizing the decomposition theorem of the normalized Laplacian characteristic polynomial, we study the normalized Laplacian spectrum of , which consists of the eigenvalues of two symmetric matrices ℒ R and ℒ Q of order 3n. By investigating the relationship between the roots and coefficients of the characteristic polynomials of the two matrices above, we obtain an explicit closed-form formula of the multiplicative degree-Kirchhoff index as well as the number of spanning trees of . Furthermore, we determine the limited value for the quotient of the multiplicative degree-Kirchhoff index and the Gutman index of .  相似文献   

6.
Mesityllithium was used to synthesize dimesitylcadmium and dimesitylmercury from CdCl2 and HgCl2, respectively. X‐ray‐crystallographic data show that the group 12 metal compounds M[Mes]2 (M = Zn, Cd, Hg) are isomorphous (monoclinic, P21/n). The asymmetric unit of M[Mes]2 (M = Zn, Cd, Hg) consists of one mesityl group bonded to the metal atom, which is related to the second substituent by an inversion center. In addition we have investigated the reaction of BBr3 with M[Mes]2 (M = Cd, Hg) for our understanding of the reactivity of donor‐free group 12 mesityl compounds. The reaction of M[Mes]2 (M = Cd, Hg) with an excess of BBr3 produces MesBBr2. UV‐induced conversion of Hg[Mes]2 in benzene yielded quantitatively mesitylene and mercury whereas irradiation of a chloroform solution of Hg[Mes]2 for 1290 min (λmax = 510 nm) gave mesitylene, Hg[Mes]Cl, and HgCl2 in a ratio of 6:4:1. Slow concentration of the reaction solution led to the deposition of X‐ray quality crystals of the addition compound of two Hg[Mes]Cl molecules and HgCl2 (monoclinic space group P21/n).  相似文献   

7.
IntroductionDuringthepastdecades ,thedevelopmentoftheco ordinationchemistryofmolybdenum(VI)focusedonmet al oxygenclusterscharacterizedbyfascinatingstructural,electrochemical,catalytic ,magnetic ,medicinal,andphotophysicalproperties ,1whichareoffundamentaland…  相似文献   

8.
Starting from fluoridosilicate precursors in neat cyanotrimethylsilane, Me3Si?CN, a series of different ammonium salts [R3NMe]+ (R=Et, nPr, nBu) with the novel [SiF(CN)5]2? and [Si(CN)6]2? dianions was synthesized in facile, temperature controlled F?/CN? exchange reactions. Utilizing decomposable, non‐innocent cations, such as [R3NH]+, it was possible to generate metal salts of the type M2[Si(CN)6] (M+=Li+, K+) via neutralization reactions with the corresponding metal hydroxides. The ionic liquid [BMIm]2[Si(CN)6] (m.p.=72 °C, BMIm=1‐butyl‐3‐methylimidazolium) was obtained by a salt metathesis reaction. All the synthesized salts could be isolated in good yields and were fully characterized.  相似文献   

9.
The reaction of [ZnCl2] with N-cyclopentyl-1-(quinolin-2-yl)methanimine (LA), N-cyclohexyl-1-(quinolin-2-yl)methanimine (LB), N-cyclohexyl-1-(pyridin-2-yl)methanimine (LC), 2,6-diethyl-N-(pyridin-2-ylmethylene)aniline (LD), N-cyclopentyl-1-(pyridin-2-yl)methanimine (LE), and N-phenyl-(pyridin-2-yl)methanimine (LF) in ethanol produced the bidentate [(NN′)ZnCl2] complexes, [LAZnCl2], [LBZnCl2], [LCZnCl2], [LDZnCl2], [LEZnCl2] and [LFZnCl2], respectively. The molecular structures revealed that the zinc in [LnZnCl2] (Ln = LA ? LD) showed a distorted tetrahedral geometry involving two nitrogens of N,N’-bidentate ligands and two chloride ligands. Most of these initiators were effective for polymerization of methyl methacrylate (MMA) and polymerization of rac-lactide (rac-LA). [LCZnCl2] (with N-cyclohexyl substituted at imine-pyridine moiety) exhibited the highest catalytic activity for MMA polymerization in the presence of modified methylaluminoxane (MMAO) with an activity of 3.33 × 104 g PMMA/mol·Zn·h at 60 °C, giving moderate syndiotactic poly methyl methacrylate (PMMA) with high molecular weight (9.62 × 105 g/mol). The dimethyl derivatives [LnZnMe2] (Ln = LA ? LF), generated in situ, polymerized rac-LA with moderate activity and yielded a polylactide (PLA) with good number-average molecular weights and narrower polydispersity indices (PDIs). [LAZnMe2] effectively initiates the ring-opening polymerization (ROP) of rac-LA to attain heterotactic PLA (Pr = 0.91).  相似文献   

10.
The radical polyaddition of N‐4‐vinylbenzoyl‐L ‐cysteine methyl ester (VCM) was carried out in the presence of 2,2′‐azobisisobutyronitrile (AIBN, 3 mol %) as an initiator in dimethyl formamide (DMF) with monomer concentrations of 0.5 and 1.0 M at 60 °C for 20 h under nitrogen atmosphere to afford the corresponding polymers [poly(VCM), PVCM] with number‐average molecular weights (Mn)'s of 5300 and 18,000 in 92 and 95% yields, respectively. The obtained polymers had a heterotelechelic structure with thiol and olefin end moieties. The radical polymerization of methyl methacrylate and trityl methacrylate was carried out in the presence of PVCM with AIBN (3 mol %) as an initiator in DMF at 60 °C for 20 h to afford the block copolymers with Mn values in the range of 13,000–26,800 in good yields. PVCM [Mn = 18,000; polydispersity (Mw/Mn) = 1.56] was treated with 4 equiv of NaOH aq. (1.0 M) to afford the polymer having carboxyl groups in the side chain with a Mn of 17,300 and Mw/Mn of 1.88 in 95% yield and was also oxidized to polysulfoxide and polysulfone with 4 equiv of H2O2 per sulfide unit in CH2Cl2 (1.0 M) for 20 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 23–31, 2001  相似文献   

11.
Pseudoelement Compounds. IV. Modification of the Ions Sulfite [SO2Y]2?, Sulfate [SO4?nYn]2?, and Sulfonate [RSO2Y]? by Introducing Pseudochalcogen Groups NCN and C(CN)2 . Described is the synthesis of pseudochalcogen modified sulfites M2[SOY2], sulfates M2[SO4?nYn] (Y = NCN), and arylsulfonates M[RSO2Y] (Y = NCN, C(CN)2). The 13C-NMR and IR spectra of the new compounds are discussed.  相似文献   

12.
The configuration at C-2 and C-4 in the molecules of 2-methyl- and 1,2-dimethyl-4-vinylethinyl(n-butyl)-4-hydroxyperhydroquinolines was determined by mass spectrometry. The principal conclusions concerning the stereochemistry were made on the basis of differences in the values of the I[M?15]+/I[M]+·, I[M?17]+/I[M]+·, I[M?43]+/I[M]+· and I[M?57]+/I[M]+· ratios in the mass spectra of the epimeric vinylethinylic alcohols, and of the I[M?15]+/I[M]+· and I[M?15]+/I[M]+· ratios in the case of the n-butylic alcohols.  相似文献   

13.
The even-parity autoionizing resonance series 3p5np'[3/2]1,2, 3p5np'[1/2]1, and 3p5nf'[5/2]3 of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2 and 3p54s'[1/2]0 in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n*. The line separation of the 3p5np' autoionizing resonances is discussed.  相似文献   

14.
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of linear hexagonal chain Ln consists of the Laplacian spectrum of path P2n+1 and eigenvalues of a symmetric tridiagonal matrix of order 2n + 1. By applying the relationship between roots and coefficients of the characteristic polynomial of the above matrix, explicit closed‐form formula for Kirchhoff index of Ln is derived in terms of Laplacian spectrum. To our surprise, the Krichhoff index of Ln is approximately to one half of its Wiener index. Finally, we show that holds for all graphs G in a class of graphs including Ln. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

15.
The presence of ceric and bromide ions catalyzes the isomerization of maleic acid (MA) to fumaric acid (FA) in aqueous sulfuric acid. A kinetic study of this bromine-catalyzed reaction was carried out. The reaction between ceric ion and maleic acid is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M (adjusted by NaClO4), and [MA]0=(0.5–1.0)M, the observed pseudo-first-order rate constant (k03) at 25° is k03=7.622×10?5 [MA]0/(1+0.205[MA]0). The reaction between ceric and bromide ions is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0=(0.025–0.150)M, the pseudo-first-order rate constant (k02) at 25° is k02= (4.313±0.095)x10?2[Br?]2+(2.060±0.119)x10?3[Br?]. The reaction of Ce(IV) with maleic acid and bromide ion is also first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [MA]0=0.75 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0= (0.025–0.150)M, the pseudo-first-order rate constant (k03) at 25° is k03= (5.286±0.045)x10?2[Br?]2+(3.568±0.056)x10?3[Br?]. For [Ce(IV)]0=5.0 × 10?4 M, [Br?]0=0.050 M, [H2SO4]0=1.2 M, μ=2.0 M, and [MA]0=(0.15–1.0)M at 25°, k03=(2.108×10?4+2.127×10?4[MA]0)/(1+0.205[MA]0). A mechanism is proposed to rationalize the results. The effect of temperature on the reaction rate was also studied. The energy barrier of Ce(IV)—Br? reaction is much less than that of Ce(IV)—MA reaction. Maleic and fumaric acids have very different mass spectra. The mass spectrum of fumaric acid exhibits a strong metastable peak at m/e 66.5.  相似文献   

16.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

17.
Uranyl complexes with acetylenedicarboxylic acid, K(H5O2)[UO2L2H2O] · 2H2O (I) and Cs2[UO2L2H2O] · 2H2O (II), L2− = C4O 4 2− were prepared for the first time. The composition and structure of the complexes were determined by X-ray diffraction. The crystal data are as follows: a = 16.254(12) ?, b = 13.508(8) ?, c = 7.683(6) ?, β = 90.91(7)°, space group C2/c, V = 1687(2) ?3 (I); a = 7.0745(10), b = 18.4246(10), c = 13.1383(10) ?, space group Abm2, V = 1712.5(3) ?3 (II). The structures of I and II are based on [UO2L2H2O] n 2− anionic chains stretched along the [101] direction (I) or [010] direction (II). In I and II, the uranium coordination polyhedron is a pentagonal bipyramid in which the equatorial environment of the uranyl ions is formed by the oxygen atoms of the four L2− anions and the water molecule. The L2− anions in I and II are bidentate bridging ligands connecting two uranium atoms that are next to each other in the anionic chain; their coordination capacity is equal to 2. In I, the K+ and H5O 2 + cations are outer-sphere species. The latter form hydrogen bonds combining the anionic chains shifted by translation b with respect to each other. The [UO2L2H2O] n 2− chains in I are surrounded by the potassium and oxonium cations; in II, these are combined by hydrogen bonds into anionic layers between which Cs+ cations are arranged. The IR spectrum of compound II was measured and interpreted. Original Russian Text ? I.A. Charushnikova, A.M. Fedoseev, N.A. Budantseva, I.N. Polyakova, Ph. Moisy, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 63–69.  相似文献   

18.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

19.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

20.
Binuclear ruthenium(III) complexes [RuX3L]2?·?nH2O (X?=?Cl, L?=?L1, L2, L3; n?=?1, L4 and L5, X?=?Br; L?=?L3), [RuX3L1.5]2?·?nH2O (X?=?Br, L?=?L1; n?=?0, L4; n?=?6 and L5; n?=?10), and [RuX3L2]2 (X?=?Br, L?=?L2) have been isolated by treatment of hydrated RuX3 (X?=?Cl/Br) in acetone with 2-(2′-aminophenylbenzimidazole) (L1), 2-(3′-aminophenylbenzimidazole) (L2), 2-[(3′-N-salicylidinephenyl)benzimidazole] (L3), 2-(3′-pyridylbenzimidazole) (L4), and 2-(4′-pyridylbenzimidazole) (L5) in acetone. The complexes were characterized by elemental analysis, conductivity and magnetic susceptibility measurements, IR, electronic, EPR, and mass spectral studies. The complexes were dimeric; based on analytical and spectral studies, an octahedral geometry was proposed for the complexes. The synthesized complexes were screened against Gram-positive and Gram-negative bacteria and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号