首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP : AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1–2 kcal ⋅ mol−1. Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal ⋅ mol−1 and −6.3 to +3.8 kcal ⋅ mol−1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.  相似文献   

2.
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound I (Cpd I), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd I has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH(2)), followed by heterolytic O-O bond cleavage that generates Cpd I and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd I). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd I and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd I is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd I are of similar energies, with a slight preference for Cpd I.  相似文献   

3.
Guanine is the most susceptible base to oxidation damage induced by reactive oxygen species including singlet oxygen (1O2, 1Δg). We clarify whether the first step of guanine oxidation in B−DNA proceeds via either a zwitterionic or a diradical intermediate. The free energy profiles are calculated by means of a combined quantum mechanical and molecular mechanical (QM/MM) method coupled with the adaptive biasing force (ABF) method. To describe the open-shell electronic structure of 1O2 correctly, the broken-symmetry spin-unrestricted density functional theory (BS−UDFT) with an approximate spin projection (AP) correction is applied to the QM region. We find that the effect of spin contamination on the activation and reaction free energies is up to ∼8 kcal mol−1, which is too large to be neglected. The QM(AP−ULC−BLYP)/MM-based free energy calculations also reveal that the reaction proceeds through a diradical transition state, followed by a conversion to a zwitterionic intermediate. Our computed activation energy of 5.2 kcal mol−1 matches experimentally observed range (0∼6 kcal mol−1).  相似文献   

4.
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII-superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII−OOH species that couples with the substrate radical, leading to a CuI-alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O−O bond cleavage is coupled with the C−S bond breaking that generates the formylglycine and a CuII-oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2, which will be useful for future experimental work.  相似文献   

5.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.  相似文献   

6.
Binding of dioxygen to a non-heme enzyme has been modeled using the ONIOM combined quantum mechanical/molecular mechanical (QM/MM) method. For the present system, isopenicillin N synthase (IPNS), binding of dioxygen is stabilized by 8-10 kcal/mol for a QM:MM (B3LYP:Amber) protein model compared to a quantum mechanical model of the active site only. In the protein system, the free energy change of O2 binding is close to zero. Two major factors consistently stabilize O2 binding. The first effect, evaluated at the QM level, originates from a change in coordination geometry of the iron center. The active-site model artificially favors the deoxy state (O2 not bound) because it allows too-large rearrangements of the five-coordinate iron site. This error is corrected when the protein is included. The corresponding effect on binding energies is 3-6 kcal/mol, depending on the coordination mode of O2 (side-on or end-on). The second major factor that stabilizes O2 binding is van der Waals interactions between dioxygen and the surrounding enzyme. These interactions, 3-4 kcal/mol at the MM level, are neglected in models that include only the active site. Polarization of the active site by surrounding amino acids does not have a significant effect on the binding energy in the present system.  相似文献   

7.
In this study, mechanisms of hydrolysis of all four chemically diverse cleavage sites of human serum albumin (HSA) by [Zr(OH)(PW11O39)]4− (ZrK) have been investigated using the hybrid two-layer QM/MM (ONIOM) method. These reactions have been proposed to occur through the following two mechanisms: internal attack (IA) and water assisted (WA). In both mechanisms, the cleavage of the peptide bond in the Cys392-Glu393 site of HSA is predicted to occur in the rate-limiting step of the mechanism. With the barrier of 27.5 kcal/mol for the hydrolysis of this site, the IA mechanism is found to be energetically more favorable than the WA mechanism (barrier = 31.6 kcal/mol). The energetics for the IA mechanism are in line with the experimentally measured values for the cleavage of a wide range of dipeptides. These calculations also suggest an energetic preference (Cys392-Glu393, Ala257-Asp258, Lys313-Asp314, and Arg114-Leu115) for the hydrolysis of all four sites of HSA. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
A joint QM/MM and ab initio study on the decomposition of urea in the gas phase and in aqueous solution is reported. Numerous possible mechanisms of intramolecular decomposition and hydrolysis have been explored; intramolecular NH3 elimination assisted by a water molecule is found to have the lowest activation energy. The solvent effects were elucidated using the TIP4P explicit water model with free energy perturbation calculations in conjunction with QM/MM Monte Carlo simulations. The explicit representation of the solvent was found to be essential for detailed resolution of the mechanism, identification of the rate-determining step, and evaluation of the barrier. The assisting water molecule acts as a hydrogen shuttle for the first step of the elimination reaction. The forming zwitterionic intermediate, H3NCONH, participates in 8-9 hydrogen bonds with water molecules. Its decomposition is found to be the rate-limiting step, and the overall free energy of activation for the decomposition of urea in water is computed to be approximately 37 kcal/mol; the barrier for hydrolysis by an addition/elimination mechanism is found to be approximately 40 kcal/mol. The differences in the electronic structure of the transition states of the NH3 elimination and hydrolysis were examined via natural bond order analysis. Destruction of urea's resonance stabilization during hydrolysis via an addition/elimination mechanism and its preservation in the rearrangement to the H3NCONH intermediate were identified as important factors in determining the preferred reaction route.  相似文献   

9.
In this study, we investigated the C? H bond activation of methane catalyzed by the complex [PtCl4]2?, using the hybrid quantum mechanical/effective fragment potential (EFP) approach. We analyzed the structures, energetic properties, and reaction mechanism involved in the elementary steps that compose the catalytic cycle of the Shilov reaction. Our B3LYP/SBKJC/cc‐pVDZ/EFP results show that the methane activation may proceed through two pathways: (i) electrophilic addition or (ii) direct oxidative addition of the C? H bond of the alkane. The electrophilic addition pathway proceeds in two steps with formation of a σ‐methane complex, with a Gibbs free energy barrier of 24.6 kcal mol?1, followed by the cleavage of the C? H bond, with an energy barrier of 4.3 kcal mol?1. The activation Gibbs free energy, calculated for the methane uptake step was 24.6 kcal mol?1, which is in good agreement with experimental value of 23.1 kcal mol?1 obtained for a related system. The results shows that the activation of the C? H bond promoted by the [PtCl4]2? catalyst in aqueous solution occurs through a direct oxidative addition of the C? H bond, in a single step, with an activation free energy of 25.2 kcal mol?1, as the electrophilic addition pathway leads to the formation of a σ‐methane intermediate that rapidly undergoes decomposition. The inclusion of long‐range solvent effects with polarizable continuum model does not change the activation energies computed at the B3LYP/SBKJC/cc‐pVDZ/EFP level of theory significantly, indicating that the large EFP water cluster used, obtained from Monte Carlo simulations and analysis of the center‐of‐mass radial pair distribution function, captures the most important solvent effects. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

10.
The MMP-2 reaction mechanism is investigated by using different computational methodologies. First, quantum mechanical (QM) calculations are carried out on a cluster model of the active site bound to an Ace-Gly approximately Ile-Nme peptide. Along the QM reaction path, a Zn-bound water molecule attacks the Gly carbonyl group to give a tetrahedral intermediate. The breaking of the C-N bond is completed thanks to the Glu 404 residue that shuttles a proton from the water molecule to Ile-N atom. The gas-phase QM energy barrier is quite low ( approximately 14 kcal/mol), thus suggesting that the essential catalytic machinery is included in the cluster model. A similar reaction path occurs in the MMP-2 catalytic domain bound to an octapeptide substrate according to hybrid QM and molecular mechanical (QM/MM) geometry optimizations. However, the rupture of the Gly( P 1) approximately Ile( P 1') amide bond is destabilized in the static QM/MM calculations, owing to the positioning of the Ile( P 1') side chain inside the MMP-2 S 1' pocket and to the inability of simple energy miminization methodologies to properly relax complex systems. Molecular dynamics simulations show that these steric limitations are overcome easily through structural fluctuations. The energetic effect of structural fluctuations is taken into account by combining QM energies with average MM Poisson-Boltzmann free energies, resulting in a total free energy barrier of 14.8 kcal/mol in good agreement with experimental data. The rate-determining event in the MMP-2 mechanism corresponds to a H-bond rearrangement involving the Glu 404 residue and/or the Glu 404-COOH --> N-Ile( P 1') proton transfer. Overall, the present computational results and previous experimental data complement each other well in order to provide a detailed view of the MMPs catalytic mechanism.  相似文献   

11.
Molecular electrocatalysts for CO2-to-CO conversion often operate at large overpotentials, due to the large barrier for C−O bond cleavage. Illustrated with ruthenium polypyridyl catalysts, we herein propose a mechanistic route that involves one metal center that acts as both Lewis base and Lewis acid at different stages of the catalytic cycle, by density functional theory in corroboration with experimental FTIR. The nucleophilic character of the Ru center manifests itself in the initial attack on CO2 to form [ Ru -CO2]0, while its electrophilic character allows for the formation of a 5-membered metallacyclic intermediate, [ Ru -CO2CO2]0,c, by addition of a second CO2 molecule and intramolecular cyclization. The calculated activation barrier for C−O bond cleavage via the metallacycle is decreased by 34.9 kcal mol−1 as compared to the non-cyclic adduct in the two electron reduced state of complex 1 . Such metallacyclic intermediates in electrocatalytic CO2 reduction offer a new design feature that can be implemented consciously in future catalyst designs.  相似文献   

12.
The equilibrium geometries and transition states for interconversion of the CSiH2 isomers in the singlet electronic ground state are optimized at the MP2 and CCSD(T) levels of theory using a TZ2P basis set. The heats of formation, vibrational frequencies, infrared intensities, and rotational constants are also predicted. There are three energy minima on the CSiH2 potential energy surface. Energy calculations at CCSD(T)/TZ2P(fd) + ZPE predict that the global energy minimum is silavinylidene (1), which is 34.1 kcal mol−1 lower in energy than trans-bent silaacetylene (2) and 84.1 kcal mol−1 more stable than the vinylidene isomer (3). The barrier for rearrangement 2→1 is calculated at the same level of theory to be 5.1 kcal mol−1, while for the rearrangement 3→2 a barrier of 2.7 kcal mol−1 is predicted. The natural bond orbital (NBO) population scheme indicates a clear polarization of the C(SINGLE BOND)Si bonds toward the carbon end. A significant ionic contribution to the C(SINGLE BOND)Si bonds of 1 and 2 is suggested by the NBO analysis. The C(SINGLE BOND)Si bond length of trans-bent silaacetylene (2) is longer than previously calculated [1.665 Å at CCSD(T)/TZ2P)]. The calculated carbon-silicon bond length of 2 is in the middle between the C(SINGLE BOND)Si double bond length of 1 (1.721 Å) and the C(SINGLE BOND)Si triple bond of the linear form HCSiH (4), which is 1.604 Å. Structure 4 is a higher-order saddle point on the potential energy surface. © 1996 by John Wiley & Sons, Inc.  相似文献   

13.
The aromatic C? C bond cleavage by a tungsten complex reported recently by Sattler and Parkin 15 offers fresh opportunities for the functionalization of organic molecules. The mechanism of such a process has not yet been determined, which appeals to computational assistance to understand how the unstrained C? C bond is activated at the molecular level. 16 , 17 In this work, by performing density functional theory calculations, we studied various possible mechanisms of cleavage of the aromatic C? C bond in quinoxaline (QoxH) by the W‐based complex [W(PMe3)42‐CH2PMe2)H]. The calculated results show that the mechanism proposed by Sattler and Parkin involves an overall barrier of as high as 42.0 kcal mol?1 and thus does not seem to be consistent with the experimental observation. Alternatively, an improved mechanism has been presented in detail, which involves the removal and recoordination of a second PMe3 ligand on the tungsten center. In our new mechanism, it is proposed that the C? C cleavage occurs prior to the second C? H bond addition, in contrast to Sattler and Parkin’s mechanism in which the C? C bond is broken after the second C? H bond addition. We find that the rate‐determining step of the reaction is the ring‐opening process of the tungsten complex with an activation barrier of 28.5 kcal mol?1 after the first PMe3 ligand dissociation from the metal center. The mono‐hydrido species is located as the global minimum on the potential‐energy surface, which is in agreement with the experimental observation for this species. The present theoretical results provide new insight into the mechanism of the remarkable C? C bond cleavage.  相似文献   

14.
The remarkable cyclization mechanism of the formation of the 6‐6‐6‐5 tetracyclic lanosterol (a key triterpenoid intermediate in the biosynthesis of cholesterol) from the acyclic 2,3‐oxidosqualene catalyzed by oxidosqualene cyclase (OSC) has stimulated the interest of chemists and biologists for over a half century. Herein, the elaborate, state‐of‐the‐art two‐dimensional (2D) QM/MM MD simulations have clearly shown that the cyclization of the A–C rings involves a nearly concerted, but highly asynchronous cyclization, to yield a stable intermediate with “6‐6‐5” rings followed by the ring expansion of the C‐ring concomitant with the formation of the D‐ring to yield the “6‐6‐6‐5” protosterol cation. The calculated reaction barrier of the rate‐limiting step (≈22 kcal mol?1) is comparable to the experimental kinetic results. Furthermore all previous experimental mutagenic evidence is highly consistent with the identified reaction mechanism.  相似文献   

15.
Ibrutinib is the first covalent inhibitor of Bruton''s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto–enol tautomerisation step (ΔG = 10.5 kcal mol−1) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.

QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto–enol tautomerisation.   相似文献   

16.
采用量子力学与分子力学组合(QM/MM)方法对人工设计逆醛缩酶RA95.5-8F催化β-羟基酮化合物裂解反应的机理进行了研究.结果表明,裂解反应主要包括赖氨酸Lys1083对底物的亲核进攻、Schiff碱形成、烯胺水解及C—N断裂等过程, C—N键裂解生成丙酮为整个反应的决速步骤,能垒为106.27 kJ/mol;活性中心的赖氨酸Lys1083、酪氨酸Tyr1051、天冬酰胺Asn1110和酪氨酸Tyr1180构成一个催化四联体, Lys1083通过与底物形成席夫碱对底物进行活化, Tyr1051作为催化酸碱参与质子转移过程,催化四联体的氢键网络有利于反应过渡态的稳定并使R-构型的底物更容易结合在活性位点,导致RA95.5-8F对R构型底物具有高的选择性和催化活性.  相似文献   

17.
The performance of a range density functional theory functionals combined in a quantum mechanical (QM)/molecular mechanical (MM) approach was investigated in their ability to reliably provide geometries, electronic distributions, and relative energies of a multicentered open‐shell mechanistic intermediate in the mechanism 8R–Lipoxygenase. With the use of large QM/MM active site chemical models, the smallest average differences in geometries between the catalytically relevant quartet and sextet complexes were obtained with the B3LYP* functional. Moreover, in the case of the relative energies between 4II and 6II , the use of the B3LYP* functional provided a difference of 0.0 kcal mol–1. However, B3LYP± and B3LYP also predicted differences in energies of less than 1 kcal mol–1. In the case of describing the electronic distribution (i.e., spin density), the B3LYP*, B3LYP, or M06‐L functionals appeared to be the most suitable. Overall, the results obtained suggest that for systems with multiple centers having unpaired electrons, the B3LYP* appears most well rounded to provide reliable geometries, electronic structures, and relative energies. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The first part of the catalytic cycle of the pterin‐dependent, dioxygen‐using nonheme‐iron aromatic amino acid hydroxylases, leading to the FeIV?O hydroxylating intermediate, has been investigated by means of density functional theory. The starting structure in the present investigation is the water‐free Fe? O2 complex cluster model that represents the catalytically competent form of the enzymes. A model for this structure was obtained in a previous study of water‐ligand dissociation from the hexacoordinate model complex of the X‐ray crystal structure of the catalytic domain of phenylalanine hydroxylase in complex with the cofactor (6R)‐L ‐erythro‐5,6,7,8‐tetrahydrobiopterin (BH4) (PAH‐FeII‐BH4). The O? O bond rupture and two‐electron oxidation of the cofactor are found to take place via a Fe‐O‐O‐BH4 bridge structure that is formed in consecutive radical reactions involving a superoxide ion, O2?. The overall effective free‐energy barrier to formation of the FeIV?O species is calculated to be 13.9 kcal mol?1, less than 2 kcal mol?1 lower than that derived from experiment. The rate‐limiting step is associated with a one‐electron transfer from the cofactor to dioxygen, whereas the spin inversion needed to arrive at the quintet state in which the O? O bond cleavage is finalized, essentially proceeds without activation.  相似文献   

19.
A fully reversible photothermal isomerization between carborane-fused trigonal-planar azaborole (dark-purple) and tetrahedral borirane (pale-yellow) has been observed, leading to the isolation and structural characterization of the first example of carborane-fused borirane. DFT calculations indicate that the azaborole is thermodynamically more stable than the borirane by 11.2 kcal mol−1, and the energy barrier for the thermal conversion from azaborole to borirane is 35.5 kcal mol−1. The reactivity studies show that the B−C(cage) bond in borirane can be broken in the reaction with CuCl, HCl, or elemental sulfur.  相似文献   

20.
We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号