首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Static secondary ion mass spectrometry was used to study the chemical reactions and lateral distributions of fatty amines, alcohols and esters spin coated onto gold surfaces and commercial aluminium–magnesium (Al–Mg) alloy surfaces, cleaned using UV–ozone. The aim of this study is to develop an understanding of the interactions of model lubricants with metal surfaces, such as gold and aluminium. This static SIMS study of organic thin films has been able to identify specific reaction products on the aluminium surface for each functional group. This work demonstrates that organic molecules with alcohol, ester and amine functional groups undergo specific chemical reactions with oxidized Al–Mg alloy surfaces. For example, films composed of the fatty alcohol dodecanol were observed to emit monomers, dimers and trimers with discrete distributions. In addition, negative secondary ion mass spectra indicate that a surface carboxylate is formed from the alcohol. The formation of carboxylate reaction products was confirmed by Fourier transform infrared spectroscopy. On Al–Mg alloy surfaces, a direct interaction with the amine and aluminium oxide surface is observed by the detection of a molecular ion that corresponds to the mass of dodecylamine and AlO?, characteristic of aluminium oxide. Ethyl laurate was shown to eliminate the ethyl group, leaving the laurate anion. This study demonstrates the ability of time‐of‐flight (ToF) SIMS to discriminate and detect chemical reaction products formed between model lubricant molecules and metal surfaces. As a result of this study, the use of ToF‐SIMS to identify reaction products of model lubricants can be extended to provide a better understanding of the interactions of lubricants and metal surfaces at high temperatures and pressures that more closely resemble the conditions encountered in industrial rolling processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The surface grafting onto inorganic ultrafine particles, such as silica, titanium oxide, and ferrite, by the reaction of acid anhydride groups on the surfaces with functional polymers having hydroxyl and amino groups was examined. The introduction of acid anhydride groups onto inorganic ultrafine particle was achieved by the reaction of hydroxyl groups on these surfaces with 4-trimethoxysilyltetrahydrophthalic anhydride in toluene. The amount of acid anhydride groups introduced onto the surface of ultrafine silica, titanium oxide, and ferrite was determined to be 0.96, 0.47, and 0.31 mmol/g, respectively, by elemental analysis. Functional polymers having terminal hydroxyl or amino groups, such as diol-type poly(propylene glycol) (PPG), and diamine-type polydimethylsiloxane (SDA), reacted with acid anhydride groups on these ultrafine particles to give polymer-grafted ultrafine particles: PPG and SDA were considered to be grafted onto these surfaces with ester and amide bond, respectively. The percentage of grafting increased with increasing acid anhydride group content of the surface: the percentage of grafting of SDA (Mn = 3.9 × 103) onto silica, titanium oxide, and ferrite reaching 64.7, 33.7, and 24.1%, respectively. These polymer-grafted ultrafine particles gave a stable colloidal dispersion in organic solvents.  相似文献   

3.
Metal carbonyls react on metal oxide surfaces to give a wide range of structures analogous to those of known compounds. The reactions leading to formation of surface-bound metal carbonyls are explained by known molecular organometallic chemistry and the functional group chemistry of the surfaces. The reaction classes include formation of acid-base adducts as the oxygen of a carbonyl group donates an electron pair to a Lewis acidic center; nucleophilic attack at CO ligands by basic surface hydroxyl groups or O2? ions; ion-pair formation by deprotonation of hydrido carbonyls to give carbonylate ions; interaction of bifunctional complexes with surface acid-base pair sites such as [Mg2⊕O2?]; and oxidative addition of surface hydroxyl groups to metal clusters. The reactions of surface-bound organometallic species include redox condensation and cluster formation on basic surfaces (paralleling the reactions in basic solution) as well as oxidation of mononuclear metal complexes and oxidative fragmentation of metal clusters by reaction with surface hydroxyl groups. Most supported metal carbonyls are unstable at high temperatures, but some, including osmium carbonyl cluster anions on the basic MgO surface, are strongly stabilized in the presence of CO and are precursors of catalysts for CO hydrogenation at 550 K.  相似文献   

4.
While the sonochemical grafting of molecules on silicon hydride surface to form stable Si–C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si–H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si–C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author’s knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.  相似文献   

5.
Inelastic Electron Tunnelling Spectroscopy (IETs) has been applied to study the adsorption of 2,3-dihydroxynaphthalene, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene and 1,4-dihydroxybenzene onto plasma-grown thin-film partially hydroxylated magnesium and aluminium oxides. For both 2,3-dihydroxynaphthalene and 1,2-dihydroxybenzene on aluminium oxide it is found that adsorbate chemisorption involves reaction of the two hydroxyl groups present in the adsorbate to form a di-anion in the case of the former and both the mono- and di-anion for the latter. The tunnel spectra for both compounds on magnesium oxide indicate that the di-anion is formed. Adsorption at the oxide surfaces for these two adsorbates involves adsorbate deprotonation with the formation, at the oxide surface, of molecular water which is subsequently desorbed and pumped away during sample junction preparation. For the 1,3- and 1,4-dihydroxy systems, on both oxides, the presence of a strong ν(OH) band at ≈3650 cm−1 suggests that only one of the hydroxyl groups present in both systems is involved in adsorbate deprotonation interactions at the respective oxide surfaces, with the second hydroxyl group present contributing to the enhanced substrate oxide ν(OH) envelope observed.  相似文献   

6.
We demonstrate a versatile methodology combining both covalent surface anchoring and polymer cross-linking that is capable of forming long-lasting coatings on reactive and nonreactive surfaces. Polymers containing reactive methoxysilane groups form strong Si-O-Si links to oxide surfaces, thereby anchoring the polymer chains at multiple points. The interchain cross-linking of the methoxysilane groups provides additional durability to the coating and makes the coatings highly resistant to solvents. By tailoring the chemical structure of the polymer, we were able to control the surface energy (wetting) of a variety of surfaces over a wide range of water contact angles of 30-140 degrees . In addition, we synthesized covalently linked layer-by-layer polymeric assemblies from these novel methoxysilane polymers. Finally, antibacterial agents, such as silver bromide nanoparticles and triiodide ions, were introduced into these functional polymers to generate long-lasting and renewable antiseptic coatings on glass, metals, and textiles.  相似文献   

7.
Summary: The UV induced cross-linking of a well defined graft copolymer polynorbornene-g-poly(ethylene oxide) at the air-water interface has been investigated. Network formation has been monitored qualitatively by observing changes in surface pressure with UV exposure time working under constant area conditions. Surface film concentration has been used as the design parameter to manipulate initial film organization, and consequently position of the functional groups. Exposure of the copolymer film to UV light at different surface concentrations in the liquid condensed region shows the closer the molecules pack together the faster the cross-linking reaction, while no cross-linking occurs when the molecules are far apart in the liquid expanded state.  相似文献   

8.
Functional group gradient surfaces where the density of functional groups changes gradually along the sample length were prepared. The functional group (? COOH, ? CONH2, and ? OH group) gradient surfaces were produced by the treatment of low-density PE sheets using a corona with gradually increasing power, followed by the graft copolymerization of acrylic acid and subsequent substitution reaction of carboxylic acid groups to amide or hydroxyl groups. The prepared gradient surfaces were characterized by the measurement of water contact angle, FTIR-ATR, and ESCA. The gradient surfaces prepared can be used to systematically investigate the interactions of biological or other species in terms of the surface functional groups and their density of polymeric materials. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The bonding of two types of ester group-containing molecules with a set of different oxide layers on aluminum has been investigated using infrared reflection absorption spectroscopy. The different oxide layers were made by giving typical surface treatments to the aluminum substrate. The purpose of the investigation was to find out what type of ester-oxide bond is formed and whether this is influenced by changes in the composition and chemistry of the oxide. The extent by which these bonded ester molecules resisted disbondment in water or substitution by molecules capable of chemisorption was also investigated. The ester groups were found to show hydrogen bonding with hydroxyls on the oxide surfaces through their carbonyl oxygens. For all oxides, the ester groups showed the same nu(C = O) carbonyl stretching vibration after adsorption, indicating very similar bonding occurs. However, the oxides showed differences in the amount of molecules bonded to the oxide surface, and a clear relation was observed with the hydroxyl concentration present on the oxide surface, which was determined from XPS measurements. The two compounds showed differences in the free to bonded nu(C = O) infrared peak shift, indicating differences in bonding strength with the oxide surface between the two types of molecules. The bonding of the ester groups with the oxide surfaces was found to be not stable in the presence of water and also not in the presence of a compound capable of chemisorption with the aluminum oxide surface.  相似文献   

10.
Charge gradient and comb-like polyethylene oxide (PEO) gradient surfaces were prepared on low density polyethylene (PE) sheets by corona discharge treatment with gradually increasing power and the following graft copolymerization of chargeable functional group- and PEO-containing vinyl monomers, respectively. Those gradient surfaces were used to investigate protein or cell interactions in relation to the surface functional groups and their density of polymeric materials.  相似文献   

11.
The processes occurring during the modification of epoxy polymers by various polymorphic aluminum oxide modifications (γ-AlO(OH), γ-Al2O3, α-Al2O3) with epoxy groups were studied by the methods of IR Fourier spectroscopy, chemical analysis, and differential scanning calorimetry (DSC) by an example of a model compound (phenyl glycidyl ether). Two types of interactions were revealed: a direct chemical reaction of phenyl glycidyl ether with the surface hydroxy groups of alyminum oxide, and phenyl glycidyl ether homopolymerization. By processing by graphical method the data of chemical analysis on the diminishing in amount of epoxy groups in the course of the polycondensation reaction the value of activation energy 106–110 kJ mol−1 of the process of phenyl glycidyl ether interaction with aluminum γ-oxide was determined.  相似文献   

12.
Barrier properties of self-assembled octadecylphosphonic acid (ODPA) monolayers on plasma-modified oxyhydroxide-covered aluminum surfaces were analyzed by means of in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS). The surface hydroxyl density prior to ODPA adsorption was increased by means of a low-temperature H(2)O-plasma treatment. Adsorption isotherms of H(2)O on ODPA self-assembled monolayer (SAM) modified surfaces in comparison to bare oxide covered aluminum surfaces showed that the ODPA SAM leads to a strongly reduced amount of adsorbed water based on the inability of water to form hydrogen bonds to the low-energy aliphatic surface. However, the ODPA SAM covered surfaces did not show a significant inhibition of the H(2)O/D(2)O isotope exchange reaction between the D(2)O gas phase and the hydroxyl groups of the aluminum oxyhydroxide film, as the interfacial layer between the ODPA SAM and the metal substrate, while the interfacial phosphonate group as well as the orientation of the SAM is not affected by the adsorption of water. It can be followed that the strong adhesion promoting and high corrosion resistances of organophosphonate monolayers on oxyhydroxide-covered aluminum is a result of the strong acid-base interaction of the phosphonate headgroup with the Al ions in the oxyhydroxide film, even in the presence of high interfacial water activity and the molecular interactions of the aliphatic chains. However, the barrier effect of such monolayers on the transport of water is negligible.  相似文献   

13.
Cyanoacrylates are an extremely reactive class of adhesives. Despite their commercial use as instant adhesives, the adhesion mechanism, especially to technically relevant oxidized metal surfaces, has not yet been sufficiently investigated. In the present work, ultra-thin ethyl cyanoacrylate films are deposited on copper oxide and aluminum oxide by spin coating and cured there. Various surface sensitive spectroscopy methods are used to identify possible interactions. X-Ray photoelectron spectroscopy (XPS) indicates, among other information, hydrogen bonding of the carbonyl group to the oxidized surfaces. Metastable induced electron spectroscopy (MIES) measurements support the theory of this preferential molecular orientation. In addition, XPS shows the presence of an ionic carboxylate (COO) species at the interface. Infrared reflection adsorption spectroscopy (IRRAS) measurements confirm this ionic interaction and furthermore allow to investigate the influence of water on the reaction. A possible interaction mechanism of cyanoacrylates with metal oxides could be proposed. The formation of a carboxylate species probably occurs by hydrolysis of the ethyl group via the intermediate of a carboxyl (COOH) species.  相似文献   

14.
The chemical bonding of three different anhydride and carboxylic acid based compounds with a set of differently prepared aluminum substrates has been investigated using infrared reflection absorption spectroscopy. The compounds were selected to model typically used adhesives, coatings, and self-assembling monolayers. The purpose of the investigation was to study the interaction of these functional groups with the aluminum oxide surface and to determine whether this interaction is influenced by the changes in chemistry and composition of the oxide layer. The extent to which the compounds resisted disbondment in water was also investigated. The oxide layers on the differently prepared substrates were all found to be capable of hydrolysis of the anhydride group, resulting in the formation of two carboxylic acid groups. Subsequently, both of the carboxylic acid groups became deprotonated, to form a coordinatively bonded carboxylate species. The same behavior was also observed for monofunctional carboxylic acids. For all different oxides layers, the carboxylate was found to be coordinated in a bridging bidentate way to two aluminum cations in the oxide layer. The oxide layers showed however clear differences in the amount of molecules being chemisorbed. A relation was established with the amount of hydroxyls present on their surfaces, as determined from X-ray photoelectron spectroscopy measurements. The coordinative bonding of a monofunctional carboxylic acid group to the oxide surface was found to be not stable in the presence of water, while a bifunctional carboxylic acid group could resist displacement by water for a prolonged period of time.  相似文献   

15.
Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.  相似文献   

16.
《Supramolecular Science》1998,5(3-4):423-426
Tin metal was vacuum deposited at room temperature on to Langmuir–Blodgett (LB) films with surfaces of either hydrophilic head groups or hydrophobic tail groups. Different growth modes on different surfaces of the LB films were observed with an atomic force microscope. Fine Sn particles deposited on the hydrophobic surface were uniform in size and similar in shape, but on the hydrophilic surface large Sn particles were observed. Chemical interactions between organic functional groups and deposited metal seems critical for the manner of crystal growth. The possibility of control over the crystallization of metals using two-dimensionally assembled organic molecules is demonstrated.  相似文献   

17.
Porous anodic alumina layers were obtained by a simple two-step anodization of low purity aluminum (99.5 % Al, AA1050 alloy) in a 0.3 M oxalic acid electrolyte at 45 V and 20 °C. The effect of anode surface area on structural features of nanoporous oxide and process of oxide formation was investigated. An ordered structure composed of nanostripes or nanopores was formed on the Al surface during electrochemical polishing in a mixture of perchloric acid and ethanol. This nanopattern is then replicated during the anodic oxide formation. It was found that the pore diameter, interpore distance, and porosity increase slightly with increasing surface area of the aluminum sample exposed to the anodizing electrolyte. On the other hand, a slight decrease in pore density and cell wall thickness was observed with increasing surface area of the sample. The detailed inspection of current density vs. time curves was also performed. The obtained results revealed that the higher surface area of the anode, the local current density minimum, was reached faster during first step of anodization and the increase in current density corresponding to the pore rearrangement process was observed earlier. Finally, a dense array of Pd nanowires (~90 nm in diameter) was synthesized by simple electrodeposition of metal inside the channels of through-hole nanoporous anodic alumina templates with relatively large surface areas (4 cm2).  相似文献   

18.
Grafting of poly(methyl vinyl ketone) onto aluminum surface   总被引:1,自引:0,他引:1  
Polymers were grafted on aluminum surfaces in order to modify the chemical and physical properties of the interface. The properly cleaned and activated surface of the aluminum substrate was first "silanized" either with 3-(trimethoxysilyl)propylamine or allyltrimethoxysilane. The grafting was carried out following two methods: (i) by the reaction of preformed poly(methyl vinyl ketone) with the aminosilane-modified surface; and (ii) by polymerization of methyl vinyl ketone with the vinylsilane-modified surface. The modified aluminum surfaces were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The new surfaces were examined by contact-angle measurements, and determinations of the Lewis basicity.  相似文献   

19.
It is well-known that chlorine active species (e.g., Cl(2), ClONO(2), ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous HCl and HNO(3) on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO(2), and HNO(3), under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N(2)O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO(2), potentially via a HONO intermediate. NO(2) undergoes further hydrolysis via a surface-mediated process, resulting in N(2)O as an additional nitrogen-containing product. In the presence of broad-band irradiation (λ > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al(2)O(3) vs CaCO(3)) and the presence of other coadsorbed gases (e.g., NH(3)). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO(3) as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.  相似文献   

20.
We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号