首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multifunctionality of nanotubes (NTs) is essential in biomedical and biotechnological applications, such as drug/gene delivery, bioseparation, and single-molecule detection. Each functionality should be located at optimal positions, depending on their roles such as targeting, tracking, and transporting. This enables avoidance of possible malfunctions or interference caused by having randomly distributed multiple groups (e.g., hydrophobic and hydrophilic) in the same space. In the aspect of multifunctionality, however, a general selective partial functionalization method of NT inner surfaces still remains a challenge. For this reason, we investigated a selective partial functionalization method of NTs using controlled gold nanoparticle (Au NP) diffusion in nanotubes and the preparation method of Au-capped silica nanotubes. Silica nanotubes (SNTs) were prepared using template sol-gel synthesis, and the inside of SNT was selectively modified with (3-trimethoxysilylpropyl) diethylenetriamine (DETA-silane). Au NPs of 2-nm size were then incubated with SNTs with DETA layer inside. Spontaneous diffusion of negatively charged Au NPs from bulk into the positively charged nanochannels of SNTs led trapped Au NPs onto the inner surface of SNTs. The degree of functionalization was controlled by the channel diameter, Au NP concentration, and solvent type. These SNTs partially modified with Au NPs were then used for localized selective chemical functionalization of SNTs. This was accomplished by the reaction between thionylated Au NPs trapped on the inside of SNTs and Alexa555-maleimide. Au-capped SNTs were prepared from SNTs with Au NPs inside by seed-mediated gold growth.  相似文献   

2.
As surface-enhanced Raman spectroscopy (SERS) continues developing to be a powerful analytical tool for several probes, four important aspects to make it more accessible have to be addressed: low-cost, reproducibility, high sensibility, and recyclability. Titanium dioxide nanotubes (TiO2 NTs) prepared by anodization have attracted interest in this field because they can be used as safe solid supports to deposit metal nanoparticles to build SERS substrate nanoplatforms that meet these four desired aspects. TiO2 NTs can be easily prepared and, by varying different synthesis parameters, their dimensions and specific features of their morphology can be tuned allowing them to support metal nanoparticles of different sizes that can achieve a regular dispersion on their surface promoting high enhancement factors (EF) and reproducibility. Besides, the TiO2 photocatalytic properties enable the substrate’s self-cleaning property for recyclability. In this review, we discuss the different methodological strategies that have been tested to achieve a high performance of the SERS substrates based on TiO2 NTs as solid support for the three main noble metal nanoparticles mainly studied for this purpose: Ag, Au, and Pt.  相似文献   

3.
The roles of silver ions and halides (chloride, bromide, and iodide) in the seed-mediated synthesis of gold nanostructures have been investigated, and their influence on the growth of 10 classes of nanoparticles that differ in shape has been determined. We systematically studied the effects that each chemical component has on the particle shape, on the rate of particle formation, and on the chemical composition of the particle surface. We demonstrate that halides can be used to (1) adjust the reduction potential of the gold ion species in solution and (2) passivate the gold nanoparticle surface, both of which control the reaction kinetics and thus enable the selective synthesis of a series of different particle shapes. We also show that silver ions can be used as an underpotential deposition agent to access a different set of particle shapes by controlling growth of the resulting gold nanoparticles through surface passivation (more so than kinetic effects). Importantly, we show that the density of silver coverage can be controlled by the amount and type of halide present in solution. This behavior arises from the decreasing stability of the underpotentially deposited silver layer in the presence of larger halides due to the relative strengths of the Ag(+)/Ag(0)-halide and Au(+)/Au(0)-halide interactions, as well as the passivation effects of the halides on the gold particle surface. We summarize this work by proposing a set of design considerations for controlling the growth and final shape of gold nanoparticles prepared by seed-mediated syntheses through the judicious use of halides and silver ions.  相似文献   

4.
This review highlights work from the authors’ laboratory on the recent development of seed-mediated growth method for noble metal nanocrystals. The seed-mediated growth method has become one of the most efficient and versatile methods for synthe-sizing high-quality noble metal nanocrystals. The seed-mediated growth method can separate the nucleation and growth stages of metal nanocrystals, and thus provide better control over the size, size distribution, and crystallographic evolution of metal nanocrystals. Because of its high controllability, the seed-mediated growth method is especially promising in providing mechanistic insights into the growth mechanisms of noble metal nanocrystals. In this review, the thermodynamic and kinetic parameters for the nucleation and growth of noble metal nanocrystals are systematically summarized. Mechanistic understanding of these parameters is provided. These studies provide useful guidelines for the rational design and synthesis of novel noble metal nanocrystals with high quality.  相似文献   

5.
A facile synthesis method for NDs-Au@AgNPs SERS substrate using Au seeds prepared by nitrogen-rich quantum dots (NDs) as reducing agent and stabilizer was developed for nitroaniline isomers recognition by surface-enhanced Raman scattering.  相似文献   

6.
Poor solubility of single-walled and multiwalled carbon nanotubes (NTs) in water and organic solvents presents a considerable challenge for their purification and applications. Macromolecules can be convenient solubilizing agents for NTs and a structural element of composite materials for them. Several block copolymers with different chemical functionalities of the side groups were tested for the preparation of aqueous NT dispersions. Poly(N-cetyl-4-vinylpyridinium bromide-co-N-ethyl-4-vinylpyridinium bromide-co-4-vinylpyridine) was found to form exceptionally stable NT dispersions. It is suggested that the efficiency of macromolecular dispersion agents for NT solubilization correlates with the topological and electronic similarity of polymer-NT and NT-NT interactions in the nanotube bundles. Raman spectroscopy and atomic force and transmission electron microcopies data indicate that the polycations are wrapped around NTs forming a uniform coating 1.0-1.5 nm thick. The ability to wind around the NT originates in the hydrophobic attraction of the polymer backbone to the graphene surface and topological matching. Tetraalkylammonium functional groups in the side chains of the macromolecule create a cloud of positive charge around NTs, which makes them hydrophilic. The prepared dispersions could facilitate the processing of the nanotubes into composites with high nanotube loading for electronic materials and sensing. Positive charge on their surface is particularly important for biological and biomedical applications because it strengthens interactions with negatively charged cell membranes. A high degree of spontaneous bundle separation afforded by the polymer coating can also be beneficial for NT sorting.  相似文献   

7.
We report the synthesis of cobalt-iron (Co–Fe) decorated tellurium nanotubes (Te NTs) using semiconductive Te NTs as a sacrificial template, following a wet chemical method. The interplay of Co and Fe precursor concentrations incorporated with Te NT, residual hydrazine hydrate, and the negative surface charge of Te NT plays a significant role in obtaining various bimetallic telluride structures. The one-dimensional (1-D) structure of Co–Fe decorated Te NTs with Te NTs in the backbone provides superior conductivity and exhibits high electrochemical performance with battery type electrode behavior. A negative surface charge value of ?18.9 mV for Te NTs is obtained due to the presence of an anionic surfactant as sodium dodecyl sulfate (SDS) forms a bilayer on Te NTs. To tune the energy density performance, the Co–Fe decorated Te NTs electrode is combined with the electric double-layer capacitors (EDLC) type electrode activated carbon (AC). The asymmetric assembly shows an excellent specific capacitance of 179.2 F/g (48.7 mAh/g) at a current density of 0.9 A/g in 4 M KOH electrolyte. More importantly, it exhibits a maximum energy density of 62.1 Wh/kg at a power density of 1,138.2 W/kg under a potential window of 1.58 V. This potential finding shows the significant applicability of Te NTs as a template for the synthesis of bimetallic tellurides with unique morphologies. The synergistic effect from multiple metals and anisotropic morphology is beneficial for energy storage applications.  相似文献   

8.
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.  相似文献   

9.
This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal <100> directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.  相似文献   

10.
We show for the first time how polymeric nanotubes (NTs) based on self‐assembled conjugates of polymers and cyclic peptides can be used as an efficient drug carrier. RAPTA‐C, a ruthenium‐based anticancer drug, was conjugated to a statistical co‐polymer based on poly(2‐hydroxyethyl acrylate) (pHEA) and poly(2‐chloroethyl methacrylate) (pCEMA), which formed the shell of the NTs. Self‐assembly into nanotubes (length 200–500 nm) led to structures exhibiting high activity against cancer cells.  相似文献   

11.
Carbon nanotubes (NTs) are becoming highly attractive molecules for applications in medicinal chemistry. The main problem of insolubility in aqueous media has been solved by developing a synthetic protocol that allows highly water-soluble carbon NTs to be obtained. As a result, biologically active peptides can be easily linked through a stable covalent bond to carbon NTs. We have demonstrated that a bound peptide from the foot-and-mouth disease virus, corresponding to the 141-159 region of the viral envelope protein VP1, retained the structural integrity and was recognized by monoclonal and polyclonal antibodies. In addition, this peptide-NT conjugate is immunogenic, eliciting antibody responses of the right specificity. Such a system could be greatly advantageous for diagnostic purposes and could find future applications in vaccine delivery.  相似文献   

12.
An agro waste‐derived, ‘water extract of pomegranate ash’ (WEPA), has been utilized for the first time as a renewable medium for Pd(OAc)2‐catalysed Suzuki–Miyaura cross‐coupling at room temperature. This method offers a simple and sustainable synthesis of biaryls from aryl halides and arylboronic acids under ligand‐ and external base‐free aerobic and ambient conditions. This method has been found effective for both activated and unactivated aryl halides in the production of biaryls with moderate to nearly quantitative yields. The protocol shows high chemoselectivity over identical/similar reactive sites in aryl halides (i.e. selectivity over identical halogens or different halogens of aryl halides). This method exhibits high regioselectivity, i.e. the selective reactivity of a halogen over other identical halogens at different positions on the aromatic nucleus. Therefore, we disclose here a clean, benign, substantial chemo‐ and regioselective and highly economic alternative method for the palladium‐assisted synthesis of biaryls using an agro waste‐derived medium.  相似文献   

13.
We describe a very simple, two-step synthetic method to prepare gold nanorods with extremely high aspect ratios (> 20) and average lengths of more than 1000 nm. The method is based on a seed-mediated growth in presence of the surfactant cetyltrimethylammonium bromide. The length and aspect ratios of the nanorods can be manipulated by varying the surfactant concentration.  相似文献   

14.
Gold nanorods (NRs) have received much attention due to their size-dependent surface plasmon-related optical properties. A seed-mediated approach has recently been developed for the synthesis of Au NRs with varying length-to-diameter aspect ratios. With the introduction of silver ions in the growth solution, Au NRs of narrow size distributions can be produced in high yields. Herein we describe an approach for the continuous and selective shortening of Au NRs synthesized by the silver ion-assisted seed-mediated method through oxidation with environmentally benign oxygen at slightly elevated temperatures. UV-visible extinction measurements indicate that the longitudinal surface plasmon band of Au NRs decreases in intensity and blue-shifts as a function of the oxidation time. Transmission electron microscopy (TEM) imaging shows that the length of Au NRs decreases with oxidation and their diameter stays almost constant, which suggests that oxidation starts at the ends of Au NRs. The size distributions of shortened Au NRs are similar to those of starting NRs. Further oxidation transforms Au NRs into nanospheres, which become smaller in diameter and finally completely disappear. It has been found that the oxidation rate of Au NRs can be controlled by temperature and acid concentration. Furthermore, high-resolution TEM studies reveal that Au NRs synthesized by the silver ion-assisted seed-mediated method are single crystalline and they stay single crystalline during oxidation. It is expected that Au NRs of any aspect ratio with narrow size distributions within the limit of that possessed by starting NRs can be produced by this mild oxidation approach.  相似文献   

15.
Novel highly selective synthesis techniques have enable the production of atomically precise monodisperse metal clusters (AMCs) of subnanometer size. These AMCs exhibit ‘molecule-like’ structures that have distinct physical and chemical properties, significantly different from those of nanoparticles and bulk material. In this work, we study copper pentamer Cu5 clusters as model AMCs by applying both density functional theory (DFT) and high-level (wave-function-based) ab initio methods, including those which are capable of accounting for the multi-state multi-reference character of the wavefunction at the conical intersection (CI) between different electronic states and augmenting the electronic basis set till achieving well-converged energy values and structures. After assessing the accuracy of a high-level multi-multireference ab initio protocol for the well-known Cu3 case, we apply it to demonstrate that bypiramidal Cu5 clusters are distorted Jahn-Teller (JT) molecules. The method is further used to evaluate the accuracy of single-reference approaches, finding that the coupled cluster singles and doubles and perturbative triples CCSD(T) method delivers the results closer to our ab initio predictions and that dispersion-corrected DFT can outperform the CCSD method. Finally, we discuss how JT effects and, more generally, conical intersections, are intimately connected to the fluxionality of AMCs, giving them a ‘floppy’ character that ultimately facilitates their interaction with environmental molecules and thus enhances their functioning as catalysts.  相似文献   

16.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒, 并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下, 金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化, 得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol·L-1、2.4 mmol·L-1、1.2 mmol·L-1和0.08 mmol·L-1。在此条件下, 金纳米棒的生长在30 min内完成, 所制备的金纳米棒表面等离子共振吸收峰位于823 nm, 其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时, 金纳米棒的尺寸也随之发生改变。此外, 我们还探讨了SDBS的作用机理。相对于经典种子生长法, 新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善, 可广泛应用于各种光学及生物分析。  相似文献   

17.
A new ionic, water‐soluble scavenger for acyl chlorides, 1‐(2‐aminoethyl)pyridinium bromide ( 1 ), has been investigated. Compound 1 was used for the rapid and simple purification of a series of benzamides and sulfonamides (Table) obtained by solution‐phase synthesis from the corresponding amines (Scheme). The inexpensive scavenger, which can be prepared on large scale, was shown to readily ‘eliminate’ excess acyl chlorides (reagent) by simple aqueous extraction. The amides purified in this way were obtained in excellent yields and purities (Table), which makes 1 a versatile new reagent, especially for the combinatorial solution‐phase synthesis of amide libraries.  相似文献   

18.
Bimetallic nanoparticles with dilute alloyed surfaces are promising materials for many applications, especially catalysis. However, the preparation of nanoparticles composed of catalytically advantageous metal pairs is complicated by challenges, such as lattice mismatch and dissimilar reduction potentials. This review presents recent advances in nanoparticle shape and composition control, and these syntheses can be classified as ‘two-step’ or ‘one-step.’ Two-step techniques use a premade particle that is modified by the deposition of the secondary metal via galvanic exchange, direct reduction, or underpotential deposition. In contrast, one-step methods such as seed-mediated coreduction, sequential coreduction, and underpotential deposition involve the simultaneous deposition of both metals. A perspective on ongoing synthetic challenges is also provided, as well as promising directions for future work.  相似文献   

19.
We report a facile method for the synthesis of uniform Au octahedra with well-controlled sizes and optical properties by seed-mediated growth. Starting from single-crystal seeds of Au spheres with a uniform size, we could reproducibly obtain Au octahedra with a narrow size distribution (<7% in standard deviation) and in high purity (>90%). Moreover, the edge lengths of these Au octahedra could be readily tuned in a controllable fashion from 16 to 77 nm by varying the amount of seeds, the concentration of HAuCl(4) , or both. We have also investigated the effects of water and poly(vinyl pyrrolidone) (PVP) in the system, as well as the reaction temperature, on the evolution of octahedral shape.  相似文献   

20.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒,并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下,金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化,得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol.L-1、2.4 mmol.L-1、1.2 mmol.L-1和0.08 mmol.L-1。在此条件下,金纳米棒的生长在30 min内完成,所制备的金纳米棒表面等离子共振吸收峰位于823 nm,其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时,金纳米棒的尺寸也随之发生改变。此外,我们还探讨了SDBS的作用机理。相对于经典种子生长法,新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善,可广泛应用于各种光学及生物分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号