首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Teeth are constituted mainly of hydroxyapatite molecules (Ca10(PO4)6(OH)2), grouped in different microstructural arrangements, depending on the dental layer considered (enamel or dentine). In the present work, these dental microstructural arrangements were characterized by atomic force microscopy. Enamel and dentine samples were cut from freshly extracted bovine incisor teeth. After metallographic polishing, the dental surfaces were etched with lactic acid (113.8 mmol/L, pH 3.3). Three etching times were tested: 1, 3 and 5 min. Atomic force micrographs showed that 1 min of etching time was effective to remove the smear layer, polishing debris and scratches, and display the characteristics of interest for both enamel and dentine. Although the bovine dental enamel rod cross-section presented keyhole-like shape, its measured dimensions (8.8 μm of major axis and 3.7 μm of minor axis) exhibited an insignificant discrepancy from human prisms diameters. Bovine dentinal tubules displayed larger mean diameters (4.0 μm) and a lower density (~17,100 tubules/mm2) than human dentine, suggesting that the use of bovine dentine as a substitute for human dentine in resin adhesion investigations should be reconsidered. Apatite nanoparticles presented a mean radius (22–23 nm) considerably smaller than that of human teeth.  相似文献   

2.
Effective laser ablation of enamel and dentine without thermal side effects   总被引:3,自引:0,他引:3  
We present a feasibility study into laser treating dental materials by using femtosecond pulses generated by a titanium:sapphire laser system which consisted of an oscillator and a regenerative amplifier. The pulse duration was varied between 200 fs and 2 ps. The observed energy thresholds for the ablation process of dentine and enamel were clearly smaller than those observed when longer pulse durations were used. The consequence of this observation is a lower thermal load within the vicinity of the radiated area. Thus no thermal damage or mechanical damage, such as cracks, were produced during the laser treatment. Commercially available femtosecond laser systems can produce ablation rates in healthy and in-vitro demineralized dental material 2 mm3 per min and 6-16 mm3 per min, respectively. These values are an order of magnitude larger than those produced by picosecond laser systems at the same time pulse energy and pulse repetition rate. The brightness of the plasma spark generated by the laser treatment depended on the dimineralization of the teeth. This may allow online control of the laser treatment.  相似文献   

3.
The beta‐induced bremsstrahlung spectra produced by 113 pure beta nuclides in teeth enamel and dentin are computed. The computed spectral distributions are presented. The spectral shapes are primarily responsible for variations in the shapes of depth‐dose distributions. They are intended to provide a quick and convenient reference for spectral shapes and to give an indication of the wide variation in these shapes. The computed bremsstrahlung spectrum is used in the evaluation of bremsstrahlung dose in teeth enamel and dentin. The evaluated Beta bremsstrahlung dose as a function distance for the studied nuclides is also presented. The beta bremsstrahlung dose decreases with the increase of distance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er: YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse (100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel’s microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.  相似文献   

5.
For better selection of “tooth-like” dental restorative materials, it is of great importance to evaluate the thermal properties of the human tooth. A simple method capable of non-destructively characterizing the thermal properties of the individual layers (dentine and enamel) of human tooth is presented. The traditional method of monotonic heating regime was combined with infrared thermography to measure the thermal diffusivities of enamel and dentine layers without physically separating them, with 4.08 (±0.178) × 107 m2/s measured for enamel and 2.01 (±0.050) × 107 m2/s for dentine. Correspondingly, the thermal conductivity was calculated to be 0.81 W/mK (enamel) and 0.48 W/mK (dentine). To examine the dependence of thermal conductivity on the configuration of dentine microstructure (microtubules), the Maxwell-Eucken and Parallel models of effective thermal conductivity are employed. The effective thermal conductivity of dentine in the direction parallel to tubules was found to be about 1.1 times higher than that perpendicular to the tubules, indicating weak anisotropy. By adopting the Series model, the bulk thermal conductivity of enamel and dentine layers is estimated to be 0.57 W/mK.  相似文献   

6.
We employed Raman microspectroscopy to measure the Raman spectra of phosphate in sound and carious tooth substance. The peak intensity at 960 cm−1 of the phosphate (PO43−) symmetric stretching vibrational mode (υ1) in sound enamel was stronger than that of sound dentin, which indicated that sound enamel contained more phosphate than sound dentin. Furthermore, the element analysis of phosphate in sound teeth substance, measured using a scanning electron microscope (SEM) equipped with an energy dispersive X‐ray spectroscope (EDX), gave similar results to those of the Raman measurement. In addition, the border between sound enamel and dentin was clearly demonstrated by mapping the image of the Raman spectrum of phosphate. The mapping image of phosphate in the carious enamel region revealed a heterogeneous low Raman spectrum intensity of phosphate in the area surrounding carious enamel; this finding indicates that phosphate had dissolved from the tooth substance in such areas. In contrast with the decrease in the Raman spectrum intensity of phosphate, the intensity of amide I increased mainly in the low‐phosphate area. Although it remains very difficult to clinically identify the accurate border between sound and carious tooth substance, this distinction may be enabled by using the Raman spectrum of carious tooth substance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Anatomical and physiologic components are parts of the stomatognathic system and their interaction results in integrated functional activities. Important alterations in the masticatory system originated by dental loss affect the bone, oral mucosa and muscular function. Dental arch structures specifically designed to receive and expose teeth allow performance of their functions. But the distinction between bony and soft tissues is lost when teeth are removed since there is not a specific function to be completed. The aim of this study was to evaluate the macroscopic and ultrastructural effects of the unilateral extraction of molar teeth on the suprahyoid muscles function, using twenty young male gerbils (Meriones unguiculatus) as the experimental animal model. They were divided in experimental malocclusion (n=10) and control (n=10) groups. The experimental malocclusion group was submitted to exodontia of the left upper molars and the control group was not submitted to this procedure and served as sham-operated. For macroscopic analysis of the suprahyoid muscle, the skin was uplifted and the muscles dissected individually and removed for weight analysis according to Scherle method. The electron microscopy analysis was made in ultra thin sections of small suprahyoid muscle fragments from the experimental and control groups, examined in a Jeol 1010, 880Kv transmission electron microscope. Several micrographs at magnifications of 3000x, 6000x, 30,000x were randomly selected for the qualitative analysis of the muscle fiber ultrastructures. Sixty days after the induced unilateral occlusal alteration no macroscopic morphologic changes was detected in the suprahyoid muscles and the muscle volume differences between the right and left sides and between groups were not significant. However, in the ultrastructural analysis suprahyoid muscles showed characteristics of specific adaptation to the unilateral occlusal alteration, by the reduced density of subsarcolemmal mitochondria and the shorter and less numerous ramifications in intermyofibrilar mitochondria localized between electronlucid myofibrils. It is concluded that unilateral exodontia of all the upper left molars affect the ultrastructural morphology of suprahyoid muscle fibers.  相似文献   

8.
The action of ultrasonic and hydrodynamic cavitation on the cracking of organic compounds of various natures (linear alkanes (octane, undecane, and hexadecane), carboxylic acids (decanoic and oleic acids), alcohols (decanol), and esters (ethyl caprate)) and transesterification of rapeseed oil and methanol and ethanol was studied. An analysis of hydrocarbon transformation products by gas chromatography, high-performance liquid chromatography, NMR, and chromato-mass spectrometry showed that cavitation treatment of any class of organic compounds of those mentioned above resulted in transformations no more than 1.1% deep. In experiments with transesterification of rapeseed oil and methanol and ethanol without a catalyst under the action of cavitation, the yield of fatty acid esters did not exceed 2.1 mol %. The energy efficiency of the cavitation apparatus was estimated at 0.002% for endothermic cracking of alkanes. The data obtained led us to conclude that the use of cavitation directly for performing cracking of various organic compounds and noncatalytic transesterification of vegetable oils was ineffective.  相似文献   

9.
The ground- and excited-state features of dual luminescent molecules are strongly influenced by the presence of alcoholic additives. Selected ground-state properties of methanol and 1,1,1,3,3,3-hexafluoro-propan-2-ol complexes of 4-aminobenzonitrile, 4-aminopyridine and aniline derivatives were obtained by quantum chemical calculations. The formation enthalpies of the complexes are the most exothermic when the cyano or ring nitrogen interacts with the hydroxyl group of the alcohols. The binding energies are almost doubled when the fluorinated reactant is the hydrogen bond donor. Parallel to the enhancement of the stabilization of the complex, the ground-state dipole moment also increases notably with complex formation. In principle, consideration of this increase is essential in interpretation of the solvatochromatic behaviour of the complexed species.  相似文献   

10.
A scheme of a fiber chemical sensor of amine-type compounds has been implemented. The sensor includes a film nanostructure deposited on the end face of an optical fiber 600 μm in diameter. The film consists of luminescent silica nanoparticles modified by functional pyrylocyanine dye, silver nanoparticles, and a photonic crystal opal film. An additional coating of the sensor film from above by a porous selective mirror, such as a photonic crystal, and introduction of silver nanoparticles 5–7 nm in diameter into it make it possible to increase the sensor sensitivity by an order of magnitude.  相似文献   

11.
Charge transfer and chemical shifts for some zincblende compounds are calculated using the electrostatic model of Shevchik et al.3,4. A comparison of the results obtained from Phillips ionicities, the bond orbital model of Harrison and ionicities, recently proposed9, is performed. The predictions from the latter scale are in sufficient agreement with the experimental data. Additionally chemical shifts for some zincblende compounds are predicted, for which experimental data are not available.  相似文献   

12.
The nature of the iron-containing phase in the dental enamel of sump beaver incisors has been studied by use of Mössbauer spectroscopy. All iron atoms are found to be trivalent and to be present in particles exhibiting superparamagnetic relaxation. The iron-containing phase has Mössbauer parameters similar to those of ferritin.  相似文献   

13.
Using the methods of laser-induced fluorescence and emissive spectroscopy, we carried out investigations of the formation of TiO molecules in a laser plasma produced by focusing the radiation of an AYG:Nd3+ laser on the surface of a titanium target in air. The radiation flux density varied within the range 108–1010 W/cm2. We investigated the distribution of molecules over internal states and the space-time distributions of Ti atoms in the ground, metastable, and excited states, as well as of TiO molecules in the ground and excited states. We found that gas-phase reactions with participation of Ti atoms in the ground state provide the most probable channel for the formation of TiO molecules; the role of reagents in ionized, excited, and metastable states is of secondary importance. Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 1, pp. 109–115, January–February, 1999.  相似文献   

14.
15.

Human tooth enamel powders, unheated as well as heated prior to X -irradiation at room temperature, have been investigated by means of Q - and W -band Electron Paramagnetic Resonance (EPR). Upon irradiation of enamel, carbonate-derived radicals are generated. The simplest acquired EPR spectra in this study consist mainly of a group of three different \hbox{CO}_3^{3-} signals, with a very weak \hbox{CO}_2^{-} contribution. The characterisation of the paramagnetic species in enamel is quite important for the reliability of EPR applications ( e.g. , EPR retrospective dosimetry). The spectra from the heated samples reveal a striking resemblance with spectra from certain irradiated synthetic apatite powders. The spin Hamiltonian parameters obtained from the computer simulations of the Q - and W -band spectra are compared with those reported in the literature.  相似文献   

16.
Phosphorus-containing compounds are the promising halon alternatives for flame inhibitions. However, some literatures suggested that the phosphorus-related inhibitors may behave as the unfavorable ones that will increase the burning velocity under lean-burn conditions, and this indeed posed potential threats to the fire prevention and fighting. To seek deeper insights into the reaction process, a numerical investigation was actualized to study the phosphorus-related effects on methane-air flames. By replacing a phosphorus-related inhibitor with the corresponding decomposed molecules, the detailed promoting and inhibiting effects of combustion were separated from the general chemical effect. A comparative study was carried out to identify the interaction between the two effects under different combustion conditions. It is observed that the promoting effect becomes the dominant factor during the reaction process when the equivalence ratio is smaller than 0.60. In this lean-burn condition, the exothermic reactions were faster than the others within the reaction chains due to the reduction of radical recombination in hydrocarbon oxidation. The results are believed to be useful for the further application and improvement of flame inhibitors.  相似文献   

17.
Fourier transform infrared spectroscopy (FTIR) has been used extensively for chemical characterization of mineralized tissues in the past few decades. FTIR is an ideal technique to analyze chemical structural properties of natural materials, since the frequencies of several vibrational modes of organic and inorganic molecules are active in the infrared. This review discusses the use of FTIR methodology, highlighting the attenuated total reflection (ATR) sampling mode, particularly for characterization of enamel, dentin and bone tissues. Enamel, dentin and bone, are composed of an organic and a mineral phase. The mineral phase is characterized essentially as nonstoichiometric substituted apatite, being the carbonate and phosphate spectral peaks the main representative of these phase. Organic matrix of the post-eruptive enamel is small (~1% weight (wt)). The dentin and bone organic phases are mainly composed of type I collagen that appears as spectral bands of amide I, amide II, amide III bands. Furthermore, synthetic apatite materials are being designed for total or partial replacement, restoration or augmentation of these biological tissues with FTIR assistance.  相似文献   

18.
Niobiophosphate compounds with a large range of niobium and oxygen environments were studied with (93)Nb and (17)O solid-state NMR. (93)Nb isotropic chemical shift of pure niobate Nb(ONb)(6), pure phosphate Nb(OP)(6) and mixed phosphate-niobate Nb(OP)(x)(ONb)((6-x)) (1相似文献   

19.
Electron structure of octahedral clusters of carbides, nitrides and oxides of titanium and vanadium is calculated by the method. Self-consistent method to determine a cluster charge is offered in terms of which the value and direction of the charge transfer at forming of the chemical bond may be obtained. The calculation results are compared with the data obtained experimentally by the X-ray photoelectron and emission spectroscopy.  相似文献   

20.
基于经典电动力学导出的表征简单离子磁化率的磁性点价gi所构建的分子磁性连接性指数?mF及45种碱金属化合物的摩尔磁化率χm的实测数据集,利用粒子群寻优的支持向量回归(SVR)方法,建立了基于0F和1F的碱金属化合物χm的预测模型,并与基于多元线性回归(MLR)模型的计算结果进行了比较.结果显示,基于9次交叉验证的SVR模型预测的平均绝对误差、平均相对误差绝对值以及均方根误差均比MLR模型小,表明SVR模型的回归预测能力优于MLR.研究表明,磁性连接性指数mF是一种合适的分子描述符,SVR是一种预测碱金属化合物χm的有效方法. 关键词: 碱金属化合物 摩尔磁化率 支持向量回归 预测  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号