首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzaldimine monolayer was exposed to soft X-rays, and the involved chemical transformation was investigated using X-ray photoelectron spectra and near-edge X-ray absorption fine structure spectroscopy. The spectroscopy indicated that irradiation of soft X-ray (550 eV)-induced selective transformation of the imine group into a nonhydrolyzable one, i.e., the amine group. Utilizing the selective chemical transformation of the imine group with the soft X-ray irradiation, we were able to generate a micropattern. AFM images showed that the patterning with alternating surface topology was effective. The patterned monolayer was further modified with biotin and Cy3-tagged Streptavidin sequentially. Fluorescence images showed that the above molecules were selectively immobilized onto the amine-terminated region of the patterned surface. The current system is found to be more efficient than the predecessor, 4-nitrobenzaldimine monolayer.  相似文献   

2.
A two‐dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir–Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine‐linked chemical structure of the obtained monolayer was characterized by tip‐enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure–property relationships.  相似文献   

3.
Aromatic β-hydroxyoximes undergo unusual fragmentation reactions as protonated or cationized species, as radical cations, or as (M - H)? ions, As protonated species, they expel OH ’ from the oxime functionality in violation of the even electron rule. Parallel eliminations of alkyl radicals follow OH’ loss when the aromatic ring is substituted with an alkyl chain. Alkyl radical losses appear to be characteristic of radical cations that can isomerize to ions in which the alkyl chain bears a radical site and the charged site is the conjugate acid of a basic functionality (e.g., oxime or imine). Evidence for the mechanisms was found in the ion chemistry of oxime and imine radical cations. The imine reference compounds were conveniently generated by fast atom bombardment-induced reduction of oximes, removing the requirement for using conventional chemical synthesis. Protonated imines and the (M - H)? ions of oximes fragment extensively via charge-remote processes to eliminate the elements of alkanes. This chemistry is not shared by the protonated oximes.  相似文献   

4.
The study below details the synthesis and self-assembly of new cruciform pi-systems and their in situ chemical reactions in monolayer films. Analysis of the packing in the crystal structure of one of these unusually shaped molecules reveals that the terphenyl arm, which is twisted out of conjugation, makes edge-to-face contact with neighboring molecules aligning the conjugated bisoxazole arms in rows. In self-assembled monolayers on metal surfaces, these cruciform pi-systems present reactive groups at the film/air interface. Films that present aldehyde functionality react with aromatic anilines to give surface-bound imines. Dimers that are >4.5 nm in length and contain a conjugated imine linkage can be made in situ on gold substrates through this strategy.  相似文献   

5.
This paper describes the generation of reversible patterns of self-assembled monolayers (SAMs) on gold and silicon oxide surfaces via the formation of reversible covalent bonds. The reactions of (patterned) SAMs of 11-amino-1-undecanethiol (11-AUT) with propanal, pentanal, decanal, or terephthaldialdehyde result in dense imine monolayers. The regeneration of these imine monolayers to the 11-AUT monolayer is obtained by hydrolysis at pH 3. The (patterned) monolayers were characterized by Fourier transform infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, contact angle and electrochemical measurements, and atomic force microscopy. Imines can also be formed by microcontact printing of amines on terephthaldialdehyde-terminated substrates. Lucifer Yellow ethylenediamine was employed as a fluorescent amine-containing marker to visualize the reversible covalent patterning on a terephthaldialdehyde-terminated glass surface by confocal microscopy. These experiments demonstrate that with reversible covalent chemistry it is possible to print and erase chemical patterns on surfaces repeatedly.  相似文献   

6.
A multicomponent annulation that proceeds by imine directed Cp*RhIII-catalyzed N−H functionalization is disclosed. The transformation affords piperazinones displaying a range of functionality and is the first example of transition metal-catalyzed multicomponent N−H functionalization. A broad range of readily available α-amino amides, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids, were effective inputs and enabled the incorporation of a variety of amino acid side chains with minimal racemization. Branched and unbranched alkyl aldehydes and various stabilized diazo compounds were also efficient reactants. The piperazinone products were further modified through efficient transformations. Mechanistic studies, including X-ray crystallographic characterization of a catalytically competent five-membered rhodacycle with imine and amide nitrogen chelation, provide support for the proposed mechanism.  相似文献   

7.
A multicomponent annulation that proceeds by imine directed Cp*RhIII-catalyzed N−H functionalization is disclosed. The transformation affords piperazinones displaying a range of functionality and is the first example of transition metal-catalyzed multicomponent N−H functionalization. A broad range of readily available α-amino amides, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids, were effective inputs and enabled the incorporation of a variety of amino acid side chains with minimal racemization. Branched and unbranched alkyl aldehydes and various stabilized diazo compounds were also efficient reactants. The piperazinone products were further modified through efficient transformations. Mechanistic studies, including X-ray crystallographic characterization of a catalytically competent five-membered rhodacycle with imine and amide nitrogen chelation, provide support for the proposed mechanism.  相似文献   

8.
Reaction of sulfur ylide with aldehyde, imine, and ketone functionality affords the desired three-membered heterocycle in excellent yield. The sulfur ylide is generated in situ upon decarboxylation of carboxymethylsulfonium betaine functionality. Of the seven carboxymethylsulfonium betaine derivatives surveyed, the highest level of conversion of π-acceptor to heterocycle was obtained with the one having S-methyl and S-phenyl functionality bound to a thioacetate derivative. Methylene aziridinations and epoxidations involving the decarboxylation of carboxymethylsulfonium betaine functionality complements existing technologies with the advantages of the reaction protocol, levels of conversion, and scope. While moderate levels of diastereocontrol were observed in the aziridination of imine functionality, the four oxiranes resolved using Jacobsen's Co(II)-salen complex were obtained in both high yield and enantioselectivity. The isolated chiral non-racemic oxiranes constitute the formal synthesis of chelonin B and combretastatin starting from 3-bromo-4-methoxybenzaldehyde and 3,4,5-trimethoxybenzaldehyde, respectively.  相似文献   

9.
Chemical surface modifications of microfibrillated cellulose   总被引:1,自引:0,他引:1  
Microfibrillated cellulose (MFC) was prepared by disintegration of bleached softwood sulphite pulp through mechanical homogenization. The surface of the MFC was modified using different chemical treatments, using reactions both in aqueous- and organic solvents. The modified MFC was characterized with fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Epoxy functionality was introduced onto the MFC surface by oxidation with cerium (IV) followed by grafting of glycidyl methacrylate. The length of the polymer chains could be varied by regulating the amount of glycidyl methacrylate added. Positive charge was introduced to the MFC surface through grafting of hexamethylene diisocyanate, followed by reaction with the amines. Succinic and maleic acid groups could be introduced directly onto the MFC surface as a monolayer by a reaction between the corresponding anhydrides and the surface hydroxyl groups of the MFC.  相似文献   

10.
The use of highly brilliant synchrotron light sources in the middle of the 1980s for X-ray diffraction has revolutionized the research of condensed monolayers. Since then, monolayers gained popularity as convenient quasi two-dimensional model systems widely used in biophysics and material science. This review focuses on structures observed in one-component phospholipid monolayers used as simplified two-dimensional models of biological membranes. In a monolayer system the phase transitions can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction. Competing interactions between the different parts of the molecule are responsible for the different monolayer structures. These forces can be modified by chemical variations of the hydrophobic chain region, of the hydrophilic head group region or of the interfacial region between chains and head groups. Modifications of monolayer structures triggered by changes of the chemical structure of double-chain phospholipids are highlighted in this paper.  相似文献   

11.
The synthesis and structural characterisation (IR, MS, 1H, 13C and 15N NMR and single crystal X-ray diffraction analysis) of 2-aminoazole complexes of pentacarbonyl Cr(0) and W(0) are described. When provided with endocyclic soft thioether or endocyclic hard amine, endocyclic borderline imine and exocyclic hard amine coordination sites, the softer endocyclic imine coordination site is favoured.  相似文献   

12.
The reactivity of stable tertiary enamides in nucleophilic addition reaction with various in-situ generated imines was explored. Under very mild conditions, formyl-bearing tertiary enamides reacted with both aromatic and aliphatic amines to form imine intermediates. In the absence or presence of p-toluenesulfonic acid as a catalyst, intramolecular nucleophilic addition of enamide to imine functionality proceeded effectively to produce diverse 4-amino-1,2,3,4-tetrahydropyridine derivatives in good to excellent yields.  相似文献   

13.
The reaction of in situ generated arynes with stannylated imines to provide ortho-stannyl-aniline derivatives is reported. The readily prepared trimethylstannyl benzophenone imine is introduced as an efficient reagent to realize the aryne σ-insertion reaction. The imine functionality is an established N-protecting group and insertions proceed with good yields and good to excellent regioselectivities. The product anilines are valuable starting materials for follow-up chemistry thanks to the rich chemistry offered by the trimethylstannyl moiety.  相似文献   

14.
Gibbs or Langmuir monolayers formed at the soft air/liquid interface are easy to handle and versatile model systems for material and life sciences. The phase state of the monolayers can be modified by lateral compression of the film while the layer structural changes are monitored by highly sensitive surface characterization techniques. The use of high brilliant synchrotron light sources for X-ray experiments is essential for the monolayer research. The present review highlights the recent achievements recorded in the monolayer field with a special emphasis on different synchrotron based X-ray characterizing methods as: grazing incidence X-ray diffraction, X-ray reflectivity and total reflection X-ray fluorescence. Some examples of single-chain surfactants, special sugar lipids, and semifluorinated compounds are given. Additionally, thin layers formed by peptides, polymers or nanoparticles are highlighted.  相似文献   

15.
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ~6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.  相似文献   

16.
The first well-defined organic monolayers assembled on polydicyclopentadiene is reported. Commercial grade dicyclopentadiene was polymerized with the Grubbs' second-generation catalyst in a fume hood under ambient conditions at very low monomer to catalyst loadings of 20 000 to 1. This simple method resulted in a polymer that was a hard solid and appeared slightly yellow. Brief exposures of a few seconds of this polymer to Br 2 lead to a surface with approximately half of the olefins brominated as shown by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy. The ATR-IR spectroscopy was carried out with the polymer in contact with a Ge hemisphere housed in a GATR accessory from Harrick. This brominated polydicyclopentadiene was immersed in DMF with 4-(trifluoromethyl)benzylamine to assemble a monolayer. The amines displaced Br on the surface to form a monolayer that exposed a CF 3 group on the surface. The surface was extensively studied by XPS using the method described by Tougaard to find the distribution of F within the surface layer. The ratio for the peak area, Ap, to the background height, B, measured 30 eV below the peak maximum was 109.8 eV. This value clearly indicated that F was found only at the surface and was not found within the polymer. A surface coverage of 1.37 amines per nm (2) was estimated and indicated that the monolayer was 28% as dense as a similar monolayer assembled from thiols on gold. Finally, a simple method to pattern these monolayers using soft lithography is described. This work is critically important because it reports the first monolayers on a relatively new and emerging polymer that has many desirable physical characteristics such as high hardness, chemical stability, and ease of forming different shapes.  相似文献   

17.
There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.  相似文献   

18.
The use of new sophisticated and highly surface sensitive techniques as synchrotron based X-ray scattering techniques and in-house infrared reflection absorption spectroscopy (IRRAS) has revolutionized the monolayer research. Not only the determination of monolayer structures but also interactions between amphiphilic monolayers at the soft air/liquid interface and molecules dissolved in the subphase are important for many areas in material and life sciences. Monolayers are convenient quasi-two-dimensional model systems. This review focuses on interactions between amphiphilic molecules in binary and ternary mixtures as well as on interfacial interactions with interesting biomolecules dissolved in the subphase. The phase state of monolayers can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction or IRRAS. The interactions can be indirectly determined by the observed structure changes. Additionally, the yield of enzymatic reaction can be quantitatively determined, secondary structures of peptides and proteins can be measured and compared with those observed in bulk. In this way, the influence of a confinement on the structural properties of biomolecules can be determined. The adsorption of DNA can be quantified as well as the competing adsorption of ions at charged interfaces. The influence of modified nanoparticles on model membranes can be clearly determined. In this review, the relevance and utility of Langmuir monolayers as suitable models to study physical and chemical interactions at membrane surfaces are clearly demonstrated.  相似文献   

19.
Langmuir-Blodgett (LB) monolayers of 5,11,17,23,29,35-hexaformyl-37,38,39,40,41,42-hexakis(1-n-octyloxy)calix[6]arene (2), deposited onto silylated silicon wafers, were cross-linked (i.e., "covalently glued") via Schiff base formation with poly(allylamine). Direct evidence for imine formation was obtained from X-ray photoelectron spectroscopy and from attenuated total reflection IR spectroscopy. These modified surfaces could be removed from the aqueous subphase into air with retention of the assembly and its orientation relative to the surface, as evidenced by atomic force microscopy, water contact angle measurements, and film thickness determinations by ellipsometry. Similar assemblies were also synthesized via a postgluing procedure, in which the substrate containing the LB monolayer was removed from the subphase and rapidly immersed into an aqueous solution containing poly(allylamine). The potential of combining postgluing methods with continuous LB film deposition as a surface modification technique is briefly discussed.  相似文献   

20.
C60 reacts thermally with 1,3-dipoles, formed in situ, from sulfide-bearing imines of glycine esters, and affords dihydro-pyrrolo [60]fullerene derivatives containing a vinylic sulfide group, which were isolated in good yields, and characterized with 1H and 13C NMR, FTIR, UV-vis spectroscopies, and with FAB, ESI mass spectrometries. The new derivatives contain a sulfide, an imine, and an ester functionality for further chemical transformations. Mechanistic considerations with regard to the loss of a mercaptan molecule in the course of the cycloaddition are deployed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号