首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

2.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

3.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

4.
In this study, a molecularly imprinted electrochemical sensor (MIP/DA) was investigated for selective and sensitive determination of dopamine (DA) by electrochemical polymerization of p-aminothiophenol in the presence of DA on gold electrode. According to electrochemical behaviour of the sensor, gained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), MIP/DA sensor showed distinctive electron transfer characteristics in comparison to the non-imprinted (NIP/DA) sensor. Besides the MIP/DA sensor showed high selectivity for dopamine through its analyte specific cavities. The sensor had a broad working range of 5.0×10−8–2.0×10−7 M with a limit of detection (LOD) of 1.8×10−8 M and the developed sensor was successfully applied for determination of dopamine in pharmaceutical samples.  相似文献   

5.
A chemically modified electrode was successfully fabricated by means of depositing a thin layer of nickel hexacyanoferrate (NiHCF) on an amine adsorbed graphite paraffin wax composite electrode using a new approach. The electrode was further coated with Nafion. The electrochemical characteristics of the modified electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The modified electrode catalyzed dopamine (DA) oxidation in the concentration range of 1.5×10?6 to 1.2×10?3 M without the interference from ascorbic acid (AA). A detection limit of 4.9×10?7 M was obtained for DA in the presence of AA with a correlation coefficient of 0.9972 based on S/N=3. Flow injection analysis was used for the determination of dopamine with excellent reproducible results. The analytical utility of the sensor was evaluated for detection of DA in urine.  相似文献   

6.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

7.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

8.
New biocomposite materials, based on the incorporation of DNA doped p-aminobenzensulfonic acid, was fabricated by electrochemical method. A carbon fiber microelectrode modified by this thin film was fabricated for selective determination of uric acid (UA) in the presence of a larger amount of ascorbic acid (AA). It was found that the voltammetric oxidation peak separation between UA and AA is about 260 mV at the modified electrode. A linear response of the peak current versus the concentration was found in the range of 8 × 10−7–6 × 10−4 M with correlation coefficient of 0.9991 and the detection limit was 5 × 10−7 M (s/n = 3) at the 5 × 10−4 M AA. The presence of high concentration AA did not interference the determination. The electropolymerized film was characterized by SEM techniques. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

9.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(4):438-448
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples.  相似文献   

11.
《Electroanalysis》2005,17(9):744-748
Magnetic nanoparticles of Fe3O4 approximately 5nm in size were synthesized and characterized by XRD and TEM. A novel gold electrode modified with Fe3O4 nanoparticles was then constructed and was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.192 V (vs. Ag/AgCl) electrode in pH 7.0 phosphate buffer solution (PB). The anodic peak currents (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range of 1.5×10?7 to 4.0×10?4 M. The detection limit (S/N=3) obtained was 3.0×10?8 M. The relative standard deviation (RSD) of 8 successive scans was 3.41% for 1.5×10?6 M DA. The interference of ascorbic acid (AA) could be eliminated efficiently. The proposed method showed excellent sensitivity and recovery.  相似文献   

12.
This study reports a comparison of adsorptive transfer and solution phase voltammetric methods for the study of caffeic acid. For this purpose, a platform was prepared by the modification of glassy carbon electrodes (GCEs) with MWCNTs and samarium nanoparticles (SmNPs) by means of an ultrasonic bath. The surface morphology of the platform was characterized using SEM, EDX and XRD. The adsorptive transfer voltammetric method was based on the adsorption of caffeic acid (CFA) at the surface of the modified electrode by keeping it into a solution of CFA. Afterwards, the modified electrode was transferred with the adsorbed species in a cell containing only 0.1 mol L−1 phosphate buffer solution (PBS) for the analysis. The current response of CFA was found to be linear over a concentration from 5.0 × 10−10 mol L−1 to 1.0 × 10−7 mol L−1. The values of the limit of detection (LOD) and limit of quantification (LOQ) were 2.0 × 10−10 mol L−1 and 6.67 × 10−10 mol L−1, respectively. The adsorptive transfer method using the modified electrode (SmNPs/MWCNTs/GCE) has successfully been applied to food samples for determining CFA. The solution phase voltammetry was carried out by dipping the electrode into a voltammetric cell containing CFA. The plot of peak currents was linear over the concentration range of 5.0 × 10−9 mol L−1 –8.0 × 10−8 mol L−1. The values of LOD and LOQ were 2.0 × 10−9 mol L−1 and 6.67 × 10−9 mol L−1 for CFA using a classical solution phase voltammetry at the proposed platform. It was shown that the LOD obtained at adsorptive transfer voltammetry was 10-fold lower when compared to classical solution phase voltammetry.  相似文献   

13.
A new sensor, gold‐6‐amino‐2‐mercaptobenzothiazole (6A2MBT), was fabricated via a self‐assembly procedure. Electrochemical properties of the monolayer were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent antifouling property against the oxidation products of DA, allowed us to construct a dynamic calibration curve with two linear parts, 1.00×10?6 to 3.72×10?4 and 3.72×10?4 to 6.42×10?4 M DA, with correlation coefficients of 0.997 and 0.992 and a detection limit of 1.57×10?7 M DA by using differential pulse voltammetry (DPV), respectively. Finally, the performance of the Au‐6A2MBT modified electrode was successfully tested for electrochemical detection of DA in a pharmaceutical sample.  相似文献   

14.
A novel voltammetric method was developed for the sensitive determination of chlorogenic acid (CGA) using a glassy carbon electrode (GCE) modified with niobium nanoparticles (NbNPs) and multiwalled carbon nanotubes (CNTs). The analytical techniques such as energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction spectroscopy were used for characterizing electrode material. The proposed voltammetric platform exhibited a highly improved redox couple for CGA. The peak separations (ΔEp) for CGA were 27 mV, 10 mV and 0 mV on the surface of unmodified GCE, CNTs/GCE and NbNPs/CNTs/GCE, respectively. Such a remarkable decrease in the value of ΔEp at NbNPs/CNTs/GCE showed that the electrode process of CGA has been accelerated at the proposed platform. In addition, a potential difference (ΔEp) of 0 V observed at the surface of proposed electrochemical platform was a clear indication of the occurrence of a symmetric voltammogram which could be attributed to a fully surface behavior of CGA. In addition, the current responses of CGA versus concentrations were linear in the range of 2.0 × 10−9 ~ 2.0 × 10−6 M with a detection limit of 8.2 × 10−10 M. Sensitive detection of CGA in samples is of importance for both scientific and therapeutic reasons due to its potential use for the treatment in many diseases. Therefore, the proposed voltammetric method at NbNPs/CNTs/GCE was applied to food samples.  相似文献   

15.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

16.
Metal organic frameworks (MOFs) have attracted extensive attention in electrochemical research fields due to their high surface area and controlled porosity. Current study is design to investigate the ECL performance of the chemically modified electrode (CME) based on the bio-MOF-1, a porous zinc-adenine framework, which loaded ruthenium complex and employed for the detection of dopamine (DA). The composite material [Ru(bpy)3]2+@bio-MOF-1 (Ru-bMOF) modified carbon glassy electrode (Ru-bMOF/GCE) exhibited an excellent ECL performance having a linear co-efficient response (R2=0.9968) for 2-(dibutyl amino) ethanol (DBAE), a classical ECL co-reactant was obtained over a concentration range of 1.0×10−9 M to 1.0×10−4 M in 0.10 M pH=6.0 phosphate buffer solution (PBS). Furthermore, DA was detected based on its inhibition effect on [Ru(bpy)3]2+/DBAE system. Compared to traditional analytical methods, this method has various advantages such as simple electrode preparation, quick response, high reproducibility (RSD<2.0 %), low limit of detection (LOD=1.0×10−10 mol/L). This chemical investigated modified electrode had exploited potential for detection of DA.  相似文献   

17.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

18.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

19.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

20.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号