首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Makkah city, Saudi Arabia, represents the most attractive place for religious tourism for Muslims all over the world. More than 15 million visitors come to the city per year, especially during Hajj (pilgrimage) and Ramadan seasons. Due to the lack of air quality assessment data for Makkah, measurement of different pollutants in Makkah is of great interest. In the present work, airborne particulate matter with aerodynamic diameter equal to or less than 2.5 µm (PM2.5) has been collected from two different sites in the city, namely the Grand mosque and Al‐Shraie, from December 2012 to January 2014 covering the different seasons of the year. The average mass concentrations at the sites are comparable, 48 ± 28 µg/m3 and 53 ± 27 µg/m3 for the Grand mosque and Al‐Shraie sites, respectively. For quantitative elemental analysis, energy dispersive X‐ray fluorescence (EDXRF) spectrometry was used. Twenty elements (Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Se, Br, Rb, Sr and Pb) were quantified in the PM2.5 samples. Fortunately, the obtained results of Pb and S are below the maximum allowance level of European commission for air quality. However, the average concentration of Ni in both sites is close to the maximum allowance level 20 ng/m3 and the Ni concentration reaches 25 ng/m3 at Grand mosque site during August 2013. Based on the Positive Matrix Factorization (PMF) analysis, four source factors were found, some signalling mixed sources, showing the main influence from mineral dust, anthropogenic/industrial sources and a marine source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Aerosol samples were collected at an urban background site in Skopje, Former Yugoslavic Republic of Macedonia, during four measurement campaigns from December 2006 to October 2007. An impactor was used to collect particulate matter (PM2.5) aerosol particles and the samples were analyzed for the concentrations of particulate mass, black carbon (BC), and 17 elements. The 12‐h average PM2.5 concentrations varied in the range 10–140 µg m?3 with the highest concentrations measured during wintertime pollution episodes and during the summer period. Pair‐wise correlations and crustal enrichment were studied and the data set was analyzed by factor analysis and positive matrix factorization. Major aerosol components were identified as mineral dust (main observed tracers Si, K, Ca, Ti, Fe, Sr, and Rb), combustion (BC, S, K, V, and Ni), traffic‐related aerosol (Pb and Zn), and secondary sulfate combined with mineral dust. Combustion sources dominated during wintertime and were likely due to heavy oil combustion, biomass burning, and other industrial activities within the city area. Mineral dust was observed throughout the year, but the concentrations peaked during the unusually hot and dry summer of 2007. It is concluded that Skopje suffers from serious air pollution due to central and residential heating, the transport sector, and industrial activities within the city, and contributions from mineral dust increase the PM2.5 concentrations under dry periods. Topography and meteorological conditions aggravate the problems and make the air quality comparable with the conditions in other highly polluted cities in Southern Europe and worldwide. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
正Dear Editors,Nowadays,many developing countries(such as China)are experiencing severe air pollution due to the rapid urbanization and industrialization.PM2.5,which refers to the particulate matter with an aerodynamic diameter of 2.5mm or less,is the most important causation of air pollution in cities[1].  相似文献   

4.
Fly ash samples collected by means of an electrostatic precipitator from the lignite-fired Yata?an Power Plants of the located in Turkey was analysed using X-ray fluorescence technique. Five trace elements, namely Nd, Ba, Sr, Mo and As were quantified using XRF. These concentration values can be helpful in developing a environmental pollution abatement approach for various applications of fly ash such as cement manufacture, wastewater treatment, lightweight contraction aggregate, ceramic production, and secondary source in recovery of valuable elements. Present results compared with results of the Kemerkoy thermal power plants [?ahin Y, Karabulut A, Budak G. A practical method for the analysis of overlepped peaks in energy dispersive X-ray spectra. Appl Spectrosc Rev 1996;31:333-45].  相似文献   

5.
Rapid industrialization and economic development have led to serious pollution in the form of fine particulate matter(PM2.5,particulate matter with a diameter of less than 2.5 μm). In China, PM2.5 has been one of the most debated topics in councils of government and issues of public concern. Terahertz(THz) radiation was employed to measure the PM2.5 in the atmosphere from September 2014 to April 2015 in Beijing. Comparison of the PM2.5 level from the website with THz absorbance revealed a significant phenomenon: THz radiation can be used to monitor PM2.5 in the atmosphere. During Asia-Pacific Economic Cooperation(APEC) 2014, "APEC Blue" was also recorded in a THz system. The relationship between absorbance and PM2.5 demonstrates that THz radiation is an effective selection for air pollution grading. Based on the absorbance spectra, the elemental compositions were studied by two-dimensional correlation spectroscopy(2 DCOS) in conjunction with X-ray fluorescence.Several single absorption peaks were revealed and caused by sulphate from coal combustion, vehicle exhaust emissions and secondary reactions. Furthermore, mathematical algorithms, such as the BPANN and SVM, can process the THz absorbance data and greatly improve the precision of the estimation of PM2.5 mass. Our results suggest that THz spectroscopy can not only reveal the component information for pollution source determination, but quantitatively monitor the PM2.5 content for pollution level evaluation. Therefore, the use of THz radiation is a new method for future air pollution monitoring and grading systems.  相似文献   

6.
In the current study, a yearlong measurement campaign was conducted during the year 2012 in a medium sized coastal Greek city, Patras. PM10 samples were collected once every 3 days, and a number of those samples were analyzed by the use of a commercial X‐ray fluorescence system, Epsilon 5 by PANalytical, The Netherlands. PMF model was used for source identification. Because the uncertainty of the measurements is used as input in the model, special emphasis was given in its accurate estimation. Seven PM10 emission sources were identified using PMF 5.0 and were, namely, mineral dust (15%), road dust (4.6%), shipping emissions (3.8%), sea salt (11.9%), biomass burning (6.9%), traffic (46.2%), and sulfates (11.6%). The concentration weighted approach was used to investigate if the contributions of the sources identified in the area are affected by long range transportation events. A methodology of estimating the uncertainty of the day to day source contributions is proposed in this study. A comparison between the 24‐hr contribution for the mineral dust factor provided by the model and the calculated contributions for the same factor deduced from appropriate equations (chemical reconstruction) can be used for this purpose. The analysis showed that when the concentrations of the elements associated with the mineral dust source are close to their lowest value, the model assigns zero contribution to the mineral dust source. Following this methodology in the current study, 6 points were identified as bad fitting points, a number that represents less than 10% of the total measurements.  相似文献   

7.
《X射线光谱测定》2005,34(2):144-152
The aim of this study was to investigate the elemental composition of airborne particles in the Khartoum area, particularly small inhalable particles of diameter ≤10 µm. Aerosol particles were collected during the period April–May 2001. The sampling was done using a dichotomous virtual impactor capable of separating airborne particles <2.5 µm in a fine mode and 2.5–10 µm particles in a coarse mode. Energy‐dispersive x‐ray fluorescence analysis was used to determine the elemental concentrations of 14 elements in the samples. Concentrations of black carbon were also measured on the two size fractions. The results obtained were compared with previous data from Khartoum and other African locations. Si, K, Ca, Ti, Mn, Fe, Zn and Sr were found to be dominant in the collected particulates. Day period collections were found to have higher elemental concentrations than those of night periods. This is attributed to higher traffic levels and wind speeds. The results show that dust aerosol transport and resuspension are the main sources that affect the quality of ambient air in the Khartoum area. The elemental concentrations from anthropogenic sources are generally low. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
2009年12月14日—28日采集了新疆农业大学校园PM10和PM2.5样品,分析了重金属Cd的形态和风险指数。该采样点在冬季采暖期间PM10及PM2.5污染非常严重,PM10和PM2.5中Cd的含量分别为3.642和1.964ng.m-3,均以残渣态为主,但PM2.5中Cd的生物有效性高于PM10中Cd的生物有效性。PM10中Cd的致癌风险为6.56×10-6,而PM2.5中Cd的致癌风险为3.46×10-6,均处于可接受的风险水平。  相似文献   

11.
12.
Gold and silver in dross were determined by energy‐dispersive X‐ray fluorescence technique. Sample was prepared by pressed pellet method using microcrystalline cellulose powder as binder, and a method of standard additions was used for quantification. Lβ X‐ray of gold (11.4 keV) and Kβ X‐ray of silver (24.9 keV) were used for analysis. The measured concentrations of gold and silver were 132 ± 8 and 1181 ± 84 mg kg?1, respectively. The results were validated by instrumental neutron activation analysis technique. The t‐test indicated that there was no significant difference between results obtained by the two techniques. Energy‐dispersive X‐ray fluorescence is a simple, precise and accurate technique for the determination of gold and silver in dross. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《X射线光谱测定》2004,33(4):267-272
The extensive characterization of the elemental composition of some important components and of major sources of particulate matter PM10 and PM2.5, sampled in parallel three times per week in Milan, for the whole year 2001 is described. More than 250 PM samples were analysed and major, minor and trace element concentrations were obtained by EDXRF. A strong seasonal modulation of particulate matter and element concentrations and an important contribution to PM from secondary compounds originating from gaseous precursors were observed. The main sources and their contribution were obtained by the application of absolute principal factor analysis to the large data set of elemental concentration. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Low calcium oxalate urinary stones from the kidney, bladder, and ureter have been collected from the arid area (Taif, Saudi Arabia). After careful washing and drying of the collected stones, the samples were converted into a contamination-free homogenous fine powder with a particles' size smaller than 50 μm. The processed urinary stone powders were studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), laboratory setup and synchrotron radiation X-ray diffraction (XRD), and energy-dispersive X-ray fluorescence (EDXRF). The activated function groups, quantitative phase analysis, and the semi-quantitative elemental analysis of the present urinary stones were identified. Seventeen elements were measured in most of the urinary stone samples. The significant elements are Ca, P, S, Cl, Zn, K, Fe, and Cu, whereas other elements were found alternatively in a few number of urinary stone samples. It was recognized that Ca exists with low concentration, which indicates the presence of different calcium phases even with low percentages. In 33% of the urinary stones, the phosphorus (P) was not measured, but there were high concentrations of sulfur (S) and low concentrations of Ca up to 2.15 ± 0.05%. The ATR-FTIR results indicate that the most compounds of the present urinary stones were urea and cystine combined with low ratios of calcium oxalate and calcium phosphate compounds. The quantitative phase analysis of the XRD of selected samples proves the presence of the cystine, urea, and calcium oxalate phases with different weight percent.  相似文献   

15.
Fang  Zh.  Yang  H.  Zhao  M.  Cao  Y.  Li  Ch.  Xing  K.  Deng  X.  Xie  Ch.  Liu  D. 《Journal of Applied Spectroscopy》2021,88(4):794-801
Journal of Applied Spectroscopy - Due to the complications in the measurement of fine particulate matter (PM2.5), this paper proposes a method using lidar for assessing PM2.5. By calculating the...  相似文献   

16.
High-resolution soft X-ray spectra of H-like and He-like ions were produced from laser irradiated silicon and aluminum targets. Plasma size was about 100 μm. X-ray spectra were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the inter combination lines of He-like ions, with the results of model calculations. Such comparison gave average values of the electron density N e=(1?1.9)×1021 cm?3 and the electron temperature T e=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π steredian during the total decay period.  相似文献   

17.
微波消解ICP-OES法测定PM2.5中金属元素   总被引:3,自引:0,他引:3  
重金属具有不可降解性,细颗粒物(PM2.5)中重金属可随呼吸进入体内,对人体构成潜在的威胁。因此,有必要针对颗粒物中重金属元素的测定方法进行研究。用玻璃纤维滤膜采样、密闭微波消解进行前处理,建立了电感耦合等离子体发射光谱仪(ICP-OES)测定PM2.5中铅、锌、铜、镉、铬的分析方法。考察了微波消解体系,通过信噪比选取了铅、锌、铜、镉、铬的最佳分析谱线和最优仪器测试条件,其结果为:(1)HNO3-H2O2消解体系比HNO3-HCl和HNO3-H2SO4消解体系更稳定、更彻底;(2)铅、锌、铜、镉、铬的最佳分析线分别为220.353,213.857,327.393,228.802,267.716 nm;(3)仪器最优测试条件为射频功率1 300 W,蠕动泵流速1.5 mL·min-1,冷却气流量15 L·min-1,载气流速0.8 L·min-1。本方法元素的检出限为2.02×10-3~8.20×10-3μg·mL-1,滤膜样品测定的相对标准偏差(RSD,n=6)为1.86%~2.82%,加标回收率为91.6%~103.7%。对重庆市中科院万州监测点细颗粒物中铅、锌、铜、镉、铬的含量进行了分析,结果表明:万州城区细颗粒物没有受到镉和铬的污染,细颗粒物中铅处于潜在污染水平,锌和铜处于轻度污染水平。  相似文献   

18.
对中国山东昌乐Be扩散处理、热处理和未处理双色蓝宝石(黄色和蓝色)进行了宝石学常规测试、紫外可见光谱、红外光谱、电子探针和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测试,以获得它们的谱学特征,提出其鉴别方法。研究发现Be扩散处理双色蓝宝石仅出现Fe3+—Fe3+形成的紫外可见吸收峰,而且377nm吸收峰的强度异常高。红外光谱中,热处理和未处理的双色蓝宝石存在明显的3 310cm-1羟基吸收峰,而该吸收峰在Be扩散处理双色蓝宝石中消失。因此,紫外可见光谱和红外光谱可用于鉴别Be扩散处理、热处理和未处理双色蓝宝石。另外,二碘甲烷浸油实验也可识别Be扩散处理双色蓝宝石。  相似文献   

19.
MgO nanobelts have been fabricated by chemical vapor deposition using MgCl3 as starting material. The products consist of a large quantity of belt-like nanostructures with typical lengths in the range of several tens to several hundreds of micrometers; some of them even have lengths on the order of a millimeter. The typical thickness and width-to-thickness ratio of the MgO nanobelts are in the range of 20 to 100 nm and about 5 to 10, respectively. The size and morphology of the MgO nanobelts were measured by transmission electron microscopy. Investigations of X-ray diffraction patterns and using high-resolution transmission electron microscopy indicate that the nanobelts have a cubic structure and are single-crystalline. Received: 23 August 2001 / Accepted: 27 August 2001 / Published online: 2 October 2001  相似文献   

20.
The aim of the study was to determine the mass, black carbon (BC), and elemental concentrations in fine particles (PM2.5) and their variations at two sites in Ouagadougou, the capital city of Burkina Faso. The weather situation in Ouagadougou during the field campaign was dominated by high pressure with variable cloudiness and no precipitation. Diurnal temperatures varied between 19 and 38 °C and relative humidity between 10 and 60%. Winds in Ouagadougou were generally coming in from the north, showing a diurnal pattern with gusts of up to 6 m/s during daytime, while evenings and nights were calmer with very stable atmospheric conditions. However, during part of this field campaign, a period of nighttime moderately stable atmospheric conditions occurred with increased wind speed and more easterly winds. Cyclones were used for the PM2.5 particle collection at both sites. The elemental analysis was done using energy dispersive x‐ray fluorescence (EDXRF) spectroscopy. Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, and Pb were identified and quantified in most of the samples. The particle mass concentration was 27–164 µg/m3 while BC varied between 1.3 and 8.2 µg/m3. No influence of leaded gasoline was found. Soil dust was identified as a major component of the particles, which was confirmed by comparing with the elements in a soil sample. A significant difference in elemental, BC, and mass concentrations was seen between periods with very stable and moderately stable atmospheric conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号