首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Determination of the depth distribution of complex nanostructures by X-ray photoelectron spectroscopy (XPS) inelastic background analysis may be complicated if the sample materials have widely different inelastic scattering cross-sections. It was recently demonstrated that this may be solved by using a mixture of cross-sections. This permits retrieval of depth distributions of complex stacks and deeply buried layers with a typical 5% accuracy. This requires however that the cross-sections of the individual sample materials are known which is often not the case and this can complicate practical use for routine analysis. In this paper, we explore to what extent a suitable two- or three-parameter cross-section can be defined independent of prior knowledge of the cross-sections involved but simply defined by fitting the cross-section parameters to the spectrum being analyzed. This paper presents a theoretical study following our recent paper that explored how to make the best choice of inelastic mean free path and inelastic scattering cross-section for the inelastic background analysis with the Quases-Tougaard software. It was previously shown that a rough analysis of the inelastic background could give a good idea of the depth distribution. Here, we demonstrate with model spectra from buried layers created with Quases-Tougaard Generate software that a rather accurate analysis can be performed for very different cases with an average ~5% error. This analysis is easy to apply as it only needs the two- or three-parameter cross-sections generated with the Quases-Tougaard software. This study is aimed to improve routine analysis of the inelastic background of XPS and hard X-ray photoelectron spectroscopy (HAXPES) spectra.  相似文献   

2.
The shape of the background in x‐ray photoemission spectra is strongly affected by scattered electrons from inelastic energy loss processes. A polynomial of low order has very often been applied to model the secondary‐electron background, giving satisfying results in some cases. An improved analysis employing the Tougaard background model has been successfully used to characterize the inelastic loss processes. However, the correct usage of the Tougaard background needs a well defined inelastic electron scattering cross‐section function λ(E) · K(E, T) (λ = inelastic mean free path, E = kinetic energy, T = energy loss). This paper presents a four‐parameter loss function λ(E) · K(E, T) = B · T/(C + C′ · T2)2 + D · T2 with the fitting parameters B, C, C′ and D implemented in the background function allowing the improved estimation of the λ(E) · K(E, T) function for homogenous materials. The fit of the background parameters is carried out parallel to the peak fit. The results will be compared with the parameters recommended by Tougaard. The calculation of inelastic electron scattering cross‐sections of clean surfaces from different materials using UNIFIT 2011 will be demonstrated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We report calculations of electron inelastic mean free paths (IMFPs) for 50–2000 eV electrons in 14 elemental solids (Li, Be, diamond, graphite, Na, K, Sc, Ge, In, Sn, Cs, Gd, Tb, and Dy) and for one solid (Al) using better optical data than in our previous work. The new IMFPs have also been used to test our TPP‐2M equation for estimating IMFPs in these materials. We found surprisingly large root‐mean‐square (RMS) deviations (39.3–71.8%) between IMFPs calculated from TPP‐2M and those calculated here from optical data for diamond, graphite and cesium; previously we had found an average RMS deviation of 10.2% for a group of 27 elemental solids. An analysis showed that the large deviations occurred for relatively small computed values of the parameter β in the TPP‐2M equation (β ~ 0.01 for diamond and graphite) and also for relatively large values of β (β ~ 0.25 for Cs). Although such extreme values of β are unlikely to be encountered for many other materials, the present results indicate an additional limitation in the reliability of the TPP‐2M equation. We also show that the parameter Nv in the TPP‐2M equation should be computed for the rare‐earth elements from the number of valence electrons and the six 5p electrons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach.  相似文献   

5.
6.
This paper reports on our study of the formation of an interface of layered structures in the Fe-Si system by reflected electron energy loss spectroscopy (REELS). Quantitative element analysis was performed using the product of the mean length of the inelastic free path by the inelastic scattering cross-section of electrons. It is shown that the Fe-Si interface is quite uniform.  相似文献   

7.
X‐ray absorption spectroscopy at the Co K edge was applied to investigate the chemical environment of Co atoms inside Co/Mo2C periodic multilayers. The results show a mixing between Co and Mo2C layers prior to any annealing process, whereas following annealing from 300 °C pure Co layers are observed. X‐ray absorption spectroscopy results are in agreement with previous nuclear magnetic resonance spectroscopy results. They indicate that the pure Co content increases upon annealing, while it is absent in the as‐deposited samples. The comparison of the results, based on the analysis of the data obtained on the multilayer samples and some reference materials, reveals that the ordering of Co atoms inside the Co layers increases upon annealing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The inelastic mean free path and the stopping power of swift electrons in relevant biomaterials, such as liquid water, DNA, protein, lipid, carotene, sugar, and ice are calculated in the framework of the dielectric formalism. The Mermin Energy Loss Function – Generalized Oscillator Strength model is used to determine the energy loss function of these materials for arbitrary energy and momentum transfer using electron energy‐loss spectroscopy data as input. To ensure the consistency of the model, efforts are made so that both the Kramers–Kronig and f‐sum rules are fulfilled to better than 2%. Our findings indicate sizeable differences in the inelastic mean free path and stopping power among these biomaterials for low‐energy electrons. For example, at 100‐eV electron energy, the inelastic mean free path in protein is 25% smaller than for water and around 10% smaller than for the other biomaterials. The stopping power values of protein, DNA, and sugar are rather similar but 20% larger than for water. Taking into account these results, we conclude that electron interactions with living tissues at the nanometric scale cannot be reliably described using only liquid water as the surrogate of the biological target. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Elastic peak electron spectroscopy (EPES) was employed to measure the inelastic mean free path (IMFP) for energies between 500 and 1600 eV for five insulating organic compounds: Kapton, polyethylene (PE), poly(methyl methacrylate) (PMMA), polystyrene (PS) and polytetrafluoroethylene (PTFE). A Ni and a Si sample were used as reference materials to avoid measurement of the elastic reflection coefficient in absolute units. Correction of experimental elastic peak intensities for surface excitations was performed which turned out to be essential. The results are compared with recent evaluations of optical constants to yield the IMFP in the literature giving satisfactory agreement, with deviations generally below 20%. Investigation of the kinematics in an electron reflection experiment shows that the dispersion coefficient used in REELS data analysis cannot be identified with the true plasmon dispersion.  相似文献   

10.
The effects of anisotropy of the photoionization cross‐section and elastic scattering of photoelectrons in solids are investigated for angle‐resolved XPS spectra (ARXPS) recorded from α–Al2O3 substrate in parallel data acquisition mode. It is shown that for quantitative analysis of ARXPS spectra recorded in parallel data acquisition mode it is essential to account for the anisotropies of the photoionization cross‐sections of the detected photoelectrons for the concerned elements in the solid due to variation of the angle between the incident x‐rays and the detected photoelectrons. Neglecting the effect of elastic scattering only leads to minor errors in quantitative analysis of the ARXPS spectra. By adopting experimentally determined values for the relative sensitivity factors of the concerned photoelectrons in the solid as a function of the detection angle, cumbersome corrections for the effects of anisotropy of the photoionization cross‐section and elastic scattering can be avoided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The initial oxidation of magnesium at oxygen partial pressures between 1.3 × 10?8 and 1.3 × 10?5 Pa and at temperatures ranging from 273 to 550 K has been investigated in situ with X‐ray photoelectron spectroscopy (XPS), ellipsometry and high resolution elastic recoil detection analysis (HERDA). Quantitative analysis of the XPS spectra showed a clear oxygen deficiency with respect to MgO for the initial oxide. HERDA measurements confirmed this relatively low oxygen content in the thin oxide layers formed. Ellipsometry measurements showed that the electronic structure of the initially formed oxide differs significantly from that of bulk MgO. The band gap values at room temperature for the oxide layers investigated are clearly smaller than the value for bulk MgO. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The recent development of X‐ray Photoelectron Spectroscopy (XPS) instrumentation with spatial resolution down to several microns has advanced the capability of elemental and chemical state imaging. XPS imaging analysis has been applied in understanding the delamination problems of siloxane coatings on polymethyl‐methacrylate (PMMA) polymer. It was found that delamination occurred by interfacial failure, and the coating suffered complete delamination from a PMMA substrate. This example offered an opportunity for the investigation of X‐ray damage on polymers encountered in XPS imaging analysis. This paper also demonstrated how to construct a constrained peak model with the aid of chemical knowledge and supporting evidence of the sample. Monte Carlo error analysis was used to determine the validity of the peak fit models used. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The conformational preferences of morphine and heroin were studied in gas phase and with inclusion of solvent effects. At 298.15 K, three conformers are significant for isolated morphine, all of them displaying antiperiplanar arrangement for the C2? C3? O? H unit, and there is only one significantly populated conformer for heroin. Quantum theory of atoms in molecules analysis of the electron density in their most populated conformers in gas phase indicates that the positive charge is shared among the amino hydrogen, those hydrogens of the methylamino group, and all of the hydrogens attached to the bridgehead carbons. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2472–2482, 2010  相似文献   

14.
The Na? K (Na10K5) silicate glass, unirradiated and electron irradiated (electron dose from 25 to 8239 Cm?2) is investigated using XPS. The measurements are performed in the angular‐resolved ADES‐400 spectrometer using AlKα X‐ray radiation and an electron beam of energy 2 keV. Owing to surface charging and ambiguity of identification of the atomic oxidized chemical states, the line shapes of selected XPS transitions are analyzed with the aid of the pattern recognition (PR) method. This method is based on a distance measure and deals with spectra representation as vectors in the n‐dimensional space. The algorithm presented, called the fuzzy k‐nearest neighbor (fkNN) rule, allows for identification of ambiguous vectors with the membership vectors described by classes membership probabilities. Under electron irradiation, the Na and K content in a surface region undergoesincrease and then slow systematic decrease. The line shape analysis indicates difficult classification of XPS spectra recorded for unirradiated and irradiated glass, especially for Na 1s transition. The chemical state of Na is a mixture of elemental and oxidized form and remains unchanged for all electron doses. Larger changes in the chemical form are observed for the K atom. In an unirradiated silicate glass, a mixture of elemental and oxide form is observed with increasing content of oxide under irradiation. The alkali atoms, Na and K, exhibit a migration effect. Comparison of PR and fitting results indicates better reliability and accuracy of the PR method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The theory describing energy losses of charged non‐relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth‐ and direction‐dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Recent developments in quantitative surface analysis by Auger (AES) and x-ray photoelectron (XPS) spectroscopies are reviewed and problems relating to a more accurate quantitative interpretation of AES/XPS experimental data are discussed. Special attention is paid to consideration of elementary physical processes involved and influence of multiple scattering effects on signal line intensities. In particular, the major features of core-shell ionization by electron impact, Auger transitions and photoionization are considered qualitatively and rigorous approaches used to calculate the respective transition probabilities are analysed. It is shown that, in amorphous and polycrystalline targets, incoherent scattering of primary and signal Auger and photoelectrons can be described by solving analytically a kinetic equation with appropriate boundary conditions. The analytical results for the angular and energy distribution, the mean escape depth, and the escape probability as a function of depth of origin of signal electrons as well as that for the backscattering factor in AES are in good agreement with the corresponding Mote Carlo simulation data. Methods for inelastic background subtraction, surface composition determination and depth-profile reconstructions by angle-resolved AES/XPS are discussed. Examples of novel techniques based on x-ray induced photoemission are considered.  相似文献   

17.
In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号