首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Multiconfiguration self-consistent field and multiconfiguration reference interaction including the Davidson’s correction techniques were employed to calculate the potential energy curves (PECs) of the BeS/BeS+ electronic states correlating to the 4/5 lowest dissociation limits. After nuclear motion treatment, we deduced reliable spectroscopic data for the neutral and cationic bound states. For BeS, the transition moments and spin-orbit couplings were also evaluated and used later with the PECs to deduce the rovibronic transition probabilities and the radiative lifetimes in the low-lying states, and to investigate the unimolecular decomposition processes of BeS (X1Σ+, A1Π, 3Σ+ and B1Σ+) leading to Be(1Sg) + S(3Pg). The prominent mechanism is a spin-orbit induced predissociation via the repulsive BeS(13Σ) state. Finally, we give the single ionization spectrum of BeS (X1Σ+) populating the BeS+ (X2Π, 12Σ, 12Σ+, 12Δ, 22Σ+, 22Π and 32Π) electronic states. The adiabatic ionisation energy of BeS is estimated to be ∼9.15 eV.  相似文献   

2.
The potential energy curves of 26 electronic states of 2Σ+g, u, 2Πg, u, and 2Δg, u symmetries of the alkali dimer Na2+, dissociating up to Na(4d) + Na+, are investigated using an ab initio approach involving a nonempirical pseudopotential for the Na+(1s22s22p6) core and core‐valence correlation corrections. Furthermore, the transition dipole functions between many electronic states and vibrational energy spacings are presented. The spectroscopic constants of these electronic states are extracted and compared with the available theoretical and experimental results. A very good agreement is observed, especially, for the ground and the first excited states. However, the comparison between our study and the model potential (MP) calculations (Magnier and Masnnou‐Seeuws Mol. Phys. 1996, 89, 711) for several states has shown a clear disagreement. The MP well depths of the 3‐42Σ+g, 12Πg, 3‐42Πg, and 22Πu electronic states are largely underestimated. In addition, the 5‐72Σ+g, 3‐72Σ+u, 22Πg, 42Πg, and 1‐22Δu MP electronic states are repulsive, although in this work, they are attractive with potential well depths of some hundreds of cm?1. The data presented in this study are very useful for studies on ion–atom interaction and cold collision in the presence of electromagnetic fields. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
《Chemical physics letters》1986,127(4):324-329
Relativistic CI calculations on the low-lying states of BiF(0+, 1, 2, 0+(II)) arising from the σ2π2 configuration are carried out. Comparison calculations of the λ-s states without spin-orbit interaction (3Σ, 1Σ+ and 1Δ) are also presented. These calculations enable the assignment of three experimentally observed low-lying states. In addition, the properties of a new state (2) are calculated (yet to be observed). The calculated dissociation energy of the ground state is 2.63 eV. The potential energy surfaces of the low-lying electronic states of BiF reveal interesting avoided crossings. Our calculations clarify the earlier assignment of the electronic transitions of BiF.  相似文献   

4.
《Chemical physics letters》1986,129(3):282-286
Potential curves for the X2Πg, A2Πu, B2Σ+u and C2Σg+ electronic states of BO2 were calculated at ab initio SCF RHF and configuration interaction (CI) level. The results obtained are consistent with a linear molecular model for all states considered. The calculated structural parameters and transition energies are in good agreement with relevant experimental data.  相似文献   

5.
Dissociative ionisation of Na2 via the 3s 3d 1Σ g and1Π g states has been studied in the near threshold energy regime up to 120 meV above the three particle (Na+ + Na(3s) +e ?) break up limit. A pulsed, cold molecular beam, pulsed laser 2 colour 3 photon resonantly enhanced multiphoton ionisation, and kinetic energy analysis of the fragments by a time of flight method (KETOF) is used. As series of vibrational levels in the two intermediate 3s 3d Rydberg states are excited, slow Na+ fragments are observed with a maximum kinetic energy given by the excess energy of the 2 + 1 photon process above threshold, thus confirming a direct dissociative ionisation process. The intensity distribution of the Na+ fragments shows a very pronounced maximum at zero kinetic energy, its shape differing somewhat for the1Σ g and1Π g intermediate states. Also observed is a strong signal of fast fragments arising from a typical 4 photon process which leads to dissociation of Na 2 + molecules in their electronic ground state.  相似文献   

6.
LCGTO-MP-LSD calculation was performed for the ground and several low-lying excited states of homo- (N2, P2, As2, and Sb2) and hetero-nuclear (PN, AsN, AsP, AsSb, SbN, and SbP) groupVA diatomics. For all the systems the ground state is found to be1Σ+. For N2 and P2, the1Σ g + ground state is followed by the3Σ u + ,3Π g ,3Δ u ,1Π g , and1Δ u low-lying exited states while for As2 the order is found to be3Σ u + ,3Δ u ,3Π g ,1Δ u ,1Π g . Finally for Sb2 the relative stability of excited states is3Σ u + ,3Δ u ,1Δ u ,3Π g ,1Π g . For the hetero-nuclear diatomics the1Σ+ ground state is, in the case of PN, AsN, AsP, SbN, and SbP, followed by the3Σ+,3Δ,3Π,1Π and1Δ low-lying excited states while for the AsSb diatomic an inversion of stability of the two last singlets occurs. The calculated spectroscopic parameters (Re, ωe, andDe) are in good agreement with all the available experimental results while, theTe values are overestimated by about 0.5 eV. Mulliken population analysis shows that both homo- and hetero-nuclear groupVA diatomics are essentially triple bonded systems.  相似文献   

7.
Potential energy curves of 22 electronic states of RhN have been calculated by the complete active space second‐order perturbation theory method. The X1Σ0+ is assigned as the ground state, and the first excited state a3Π0+ is 978 cm?1 higher. The 1Δ(I) and B1Σ+ states are located at 9521 and 13,046 cm?1 above the ground state, respectively. The B1Σ+ state should be the excited state located 12,300 cm?1 above the ground state in the experimental study. Moreover, two excited states, C1Π and b3Σ+, are found 14,963 and 15,082 cm?1 above the X1Σ+ state, respectively. The transition C1Π1–X1Σ0+ may contribute to the experimentally observed bands headed at 15,071 cm?1. There are two excited states, D1Δ and E1Σ+, situate at 20,715 and 23,145 cm?1 above the X1Σ+ state. The visible bands near 20,000 cm?1 could be generated by the electronic transitions D1Δ2–a3Π1 and E1Σ+0–X1Σ+0 because of the spin–orbit coupling effect. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The potential energy curves have been calculated for the electronic states of the molecule LiK within the range 3 to 300 a.u., of the internuclear distance R. Using an ab initio method, through a semiempirical spin-orbit pseudo-potential for the Li (1s 2) and K (1s 22s 22p 63s 23p 6) cores and core valence correlation correction added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The core valence effects including core-polarization and core-valence correlation are taken into account by using an l-dependent core-polarization potential. The molecular orbitals have been derived from self-consistent field (SCF) calculation. The spectroscopic constants, dipole moments and vibrational levels of the lowest electronic states of the LiK molecule dissociating into K (4s, 4p, 5s, 3d, and 5p) + Li (2s, 2p, 3s, and 3p) in 1, 3Σ, 1, 3Π, and 1, 3Δ symmetries. Adiabatic results are also reported for 2Σ, 2Π, and 2Δ electronic states of the molecular ion LiK+ dissociating into Li (2s, 2p, 3s, and 3p) + K+ and Li+ + K (4s, 4p, 5s, 3d, and 5p). The comparison of the present results with those available in the literature shows a very good agreement in spectroscopic constants of some lowest states of the LiK and LiK+ molecules, especially with the available theoretical works. The existence of numerous avoided crossing between electronic states of 2Σ and 2Π symmetries is related to the charge transfer process between the two ionic systems Li+K and LiK+.  相似文献   

9.
Potential energy curves of low-lying electronic states of the CN2+ dication and of the electronic ground states of CN+ and the neutral CN molecule were calculated using internally contracted multireference CI and the coupled cluster RCCSD(T) methods. Spectroscopic constants and adiabatic excitation energies of 13 quasibound electronic states of the dication were obtained and the energy of charge stripping of CN+ and double ionization energy of CN were predicted. Tunneling and spin-orbit induced predissociation lifetimes for the vibrational levels in the low-lying electronic states are presented and the metastability of the dication is discussed.  相似文献   

10.
The electronic structure and the spectroscopic properties for low‐lying electronic states of the LiRb+ molecular ion, dissociating into Li (2s, 2p, 3s, 3p, 3d, 4s, and 4p) + Rb+ and Li+ + Rb (5s, 5p, 4d, 6s, 6p, 5d, and 7s), have been investigated using an ab initio approach based on non‐empirical pseudo potentials for the Li and Rb cores and parametrized l‐dependent polarization potential. We have determined the adiabatic potential energy curves and their spectroscopic constants for many electronic states of 2Σ+, 2Π, and 2Δ symmetries. A satisfying agreement, for the spectroscopic constants, has been obtained for the ground and the first excited states with the available theoretical works. Potential energy curves were presented, for the first time, for the higher excited states. In addition, we have localised and analysed the avoided crossings between electronic states of 2Σ+ and 2Π symmetries. Their existences can be related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Li+Rb and LiRb+. Moreover, we have determined the transition dipole moments from X2Σ+ and 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. For our best knowledge, no experimental data on the LiRb+ molecular ion is available. These theoretical data can help experimentalists to optimize photoassociative formation of ultracold LiRb+ molecular ion and their longevity in a trap or in an optical lattice. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
The potential energy curves (PECs) of eight low‐lying electronic states (X1Σ+, a3Π, a′3Σ+, d3Δ, e3Σ?, A1Π, I1Σ?, and D1Δ) of the carbon monoxide molecule have been studied by an ab initio quantum chemical method. The calculations have been performed using the complete active space self‐consistent field method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the correlation‐consistent aug‐cc‐pV5Z basis set. The effects on the PECs by the core‐valence correlation and relativistic corrections are included. The way to consider the relativistic corrections is to use the third‐order Douglas–Kroll Hamiltonian approximation at the level of a cc‐pV5Z basis set. Core‐valence correlation corrections are performed using the cc‐pCVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are corrected for size‐extensivity errors by means of the Davidson modification (MRCI+Q). The spectroscopic parameters (De, Te, Re, ωe, ωexe, ωeye, Be, αe, and γe) of these electronic states are calculated using these PECs. The spectroscopic parameters are compared with those reported in the literature. Using the Breit–Pauli operator, the spin–orbit coupling effect on the spectroscopic parameters is discussed for the a3Π electronic state. With the PECs obtained by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations, the complete vibrational states of each electronic state have been determined. The vibrational manifolds have been calculated for each vibrational state of each electronic state. The vibrational level G(ν), inertial rotation constant Bν, and centrifugal distortion constant Dν of the first 20 vibrational states when the rotational quantum number J equals zero are reported and compared with the experimental data. Comparison with the measurements demonstrates that the present spectroscopic parameters and molecular constants determined by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations are both reliable and accurate. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The A2Πr-X2Σ+ transition of TiN was observed by the dispersed laser induced fluorescence (DLIF) spectroscopy. The relative intensities of the DLIF spectra were analyzed to determine the dependence of the electronic transition moment, Re(r), on the internuclear distance, r, as Re(r)∝{1−0.281(26)r} (1.380 Å≤r≤1.823 Å). This r-dependence was analyzed simultaneously with the reported values of the spin-orbit constants for A2Πr and the hyperfine-coupling constants for X2Σ+ to evaluate the ionic character of the TiN bond, the 4s atomic character in the 9σ orbital of X2Σ+, and the 4p atomic character in the 4π orbital of A2Πr. These characters were confirmed to be in accordance with the reported theoretical prediction. A strong r-dependence was indicated for the 3d-4p mixing in the A2Πr state due to the configuration mixing of the Ti(3d4) and Ti(3d34p) states at a large internuclear distance.  相似文献   

13.
New emission systems have been observed from the helium afterglow reaction of GeH4 in the 520–610 nm region. On the basis of the rotational analysis, they were assigned to the a 3Π0+-X1Σ+ and a3Π1-X1Σ+ subsystems of GeH+. Spectroscopic constants have been determined for the GeH+ (a3Π0+, a3Π1, X1Σ+) states.  相似文献   

14.
CAS SCF CI (SD) calculations have been carried out for the 3Σ?g, 1Σ+g, 3Σ+u, and 5Δu states of Sc2 using large gaussian basis sets. The 3Σ?g, 1Σ+g, and 3Σ+u states arise from the 2D(4s2 3d1) + 2D(4s2 3d1) limit of Sc2 and are found to be only weakly bound (Dc ≈ 0.06 eV and Rc ≈ 8.0a0). The 5Δu state arises from the 2D(4s2 3d1) + 4F(4s1 3d1 4p1) atomic limit. This state is found to be strongly bound relative to its limits (Dc ≈ 0.8 eV and Rc ≈ 7.0a0).  相似文献   

15.
The highly accurate valence internally contracted multireference configuration interaction (MRCI) approach has been employed to investigate the potential energy curves (PECs) for the X2Π, b4Σ?, C2Σ? states of PO and the X1Σ+ state of PO+. For these electronic states, the spectroscopic parameters of the isotopes (P16O, P18O, P16O+, and P18O+) have been determined and compared with those of the investigations reported in the literature. The comparison shows that excellent agreement exists between the present results and the available experiments. With the PECs determined here, the first 30 vibrational states for P16O(X2Π, b4Σ?), P18O(X2Π, b4Σ?), P16O+(X1Σ+), and P18O+(X1Σ+) are computed when the rotational quantum number J equals zero (J = 0). The vibrational level G(υ), inertial rotation constant Bυ and centrifugal distortion constant Dυ are determined when J = 0. All the results of vibrational states except for P16O (X2Π) are reported for the first time. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Results of CASSCF state-averaged calculations on the lowest electronic states of LaO and LaO+ are reported in this work. For comparison, some low-lying electronic states of AlO and AlO+ are also reported. The ground state of LaO was found to be the X2Σ+ (Re = 1.987 Å, ωe = 794 cm?1) with a low-lying A2Δ excited state. Five more excited states below 26000 cm?1 were found. The first ionization potential (IP ) is found at 5.16 eV, resulting in an X1Σ+ ground state for the LaO+ diatom, in opposition to AlO+ for which an X3 Π ground state has been found. Analysis of the wave functions, dipole moments, and Mulliken populations reveal that the bonding is quite ionic in both systems. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The photoelectron spectra of the four monohaloacetylenes X? C?C? H with X ? F, Cl, Br, I have been recorded. The first four bands of these spectra are assigned (in order of increasing ionization potentials) to the following states: band 1: 2Π3/2(1), 2Π1/2(1); band 2: 2Π3/2(2), 2Π1/2(2); band 3: 2Σ+(3); band 4: 2Σ+(4). A correlation diagram based on a simple ZDO-MO model shows that the observed band positions and the size of the splits due to spin-orbit coupling can be satisfactorily explained in terms of such a model. It is found that the orbital energies AX of the postulated halogen n p λ(X)-basis orbitals are a linear function of the ionization potentials I(X) of the free atoms X. The validity of the ZDO-MO-model is confirmed by the excellent qualitative agreement between the observed and predicted spacings of the vibrational fine structure of the π-bands.  相似文献   

18.
Multiphoton excitation of CS2 by means of a frequency-narrowed tunable KrF laser (248 nm) leads to ionisation and photofragment fluorescence from CS(A 1Π) and CS(d3Δ). Emission spectra can be obtained without any interference from the strong laser-induced flourescence from CS(X1Σ+) observed in previous work with broad-band KrF laser. Excitation and fragmentation mechanisms are discussed within the context of higher Rydberg states of CS2.  相似文献   

19.
Diatomic halogens are studied with UV photoelectron spectroscopy using new techniques to preserve high resolution even for reactive species. For the first time vibrational structure is observed on the 2Πu,i (i = 1/2,3/2) states (F2+, Cl2+), the 2Σg+ states (F2+, Cl2+) and the Br2+ (2Πu,32) state. On the 2Πu,i states (F2+, Cl2+, Br2+) spin-orbit splitting is resolved. Indications for a small potential barrier on the F2+ (2Πu,i) state for large internuclear distances are found. A new value for the spin-orbit splitting of the Cl2+(2Πg) state is presented (= ?725 cm?1). The complementary nature of optical emission and photoelectron spectroscopy for small ions is demonstrated leading to a more complete picture of the F2+ (2Πu,i) and Cl2+ (2Πu,i) ionic states.  相似文献   

20.
Magnesium monofluoride (MgF) is proposed as an ideal candidate radical for direct laser cooling. Here, the rotationally resolved laser spectra of MgF for the A2Π-X2Σ+ electronic transition system were recorded by using laser induced fluorescence technique. The MgF radicals were produced by discharging SF6/Ar gas mixtures between the tips of two magnesium needles in a supersonic jet expansion. We recorded a total of 19 vibrational bands belonging to three sequences of Δv=0, ±1 in the region of 348-370 nm. Accurate spectroscopic constants for both X2Σ+ and A2Π states are determined from rotational analysis of the experimental spectra. Spectroscopic parameters, including the Franck-Condon factors (FCFs), are determined from the experimental results and the Rydberg-Klein-Rees (RKR) calculations. Significant discrepancies between the experimentally measured and RKR-calculated FCFs are found, indicating that the FCFs are nearly independent of the spin-orbit coupling in the A2Π state. Potential energy curves (PECs) and FCFs determined here provide necessary data for the theoretical simulation of the laser-cooling scheme of MgF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号