首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this contribution, we present results of a non-destructive in-depth analysis of concentration of chemical components at buried interfaces on Ge-based CMOS by means of hard X-ray photoelectron spectroscopy (HAXPES) and low angle X-ray reflectivity (XRR). Two samples composed of a Ge/Si/SiO2/HfO2/TiN stack, with layer and interlayer thicknesses of 2500, 0.9, 0.5, 4.9, 3.4 nm and 2500, 0.7, 1, 5.8, 3 nm have been studied. The use of electrons with kinetic energies from few eV up to 15 keV enables to tune the information depth being able to analyze the desired interface in a non-destructive way. XRR enables the determination of the exact layer thickness and density. The results suggest that the Si interlayer prevents the Ge oxidation. Depth profiles of the electronic structure have been obtained for both samples by following the evolution of the photoemission signal from the Hf 2p3/2 core level as a function of the photoelectron kinetic energy. The depth profile of the electronic structure reveals the presence of a chemical shift of the Hf 2p3/2 core level, which is related to an interfacial bonding state. Our results demonstrate the excellent capability of HAXPES to study buried interfaces in a non-destructive way.  相似文献   

2.
岳建岭  孔明  赵文济  李戈扬 《物理学报》2007,56(3):1568-1573
采用V和SiO2靶通过反应溅射方法制备了一系列具有不同SiO2和VN调制层厚的VN/SiO2纳米多层膜. 利用X射线衍射、X射线能量色散谱、高分辨电子显微镜和微力学探针表征了多层膜的微结构和力学性能. 结果表明:在Ar,N2混和气体中,射频反应溅射的SiO2薄膜不会渗氮. 单层膜时以非晶态存在的SiO2,当其厚度小于1nm时,在多层膜中因VN晶体层的模板效应被强制晶化,并与VN层形成共格外延生长. 相应地,多层膜的硬度得到明显提高,最高硬度达34GPa. 随SiO2层厚度的进一步增加,SiO2层逐渐转变为非晶态,破坏了与VN层的共格外延生长结构,多层膜硬度也随之降低. VN调制层的改变对多层膜的生长结构和力学性能也有影响,但并不明显. 关键词: 2纳米多层膜')" href="#">VN/SiO2纳米多层膜 共格外延生长 非晶晶化 超硬效应  相似文献   

3.
Transparent TiO2 films were produced via sol-gel spin and dip-coating techniques. Soda-lime glass (SLG) and SiO2 precoated glass were used as substrates. The thin films were characterized by X-ray diffraction (XRD), X-ray reflectometry (XRR), optical profilometer and glow discharge optical emission spectroscopy (GD-OES). Na migration was detected in the amorphous TiO2 films which are deposited on SLG substrates. In order to prevent sodium migration a barrier layer was introduced between TiO2 film and glass. The beneficial role of this barrier layer on alkali migration is verified and the mechanism of prevention of migration is proposed relying on the results of GD-OES depth profile measurements.  相似文献   

4.
Present report details an analysis of X-ray reflectivity (XRR) for solution processed NiO thin films on Si (100) substrates. The films were annealed at 700–1,000 °C for 1 h in air. XRR data indicated growth of SiO2 layer from ~8 nm at 700 °C to ~66 nm at 1,000 °C along with significant variation of electron density profile. X-ray photoelectron spectroscopy and X-ray diffraction studies were used as supporting studies for phase purity and oxidation states of the NiO thin films as well as interfacial SiO2 layer.  相似文献   

5.
Si-rich oxide/SiO2 multilayer films with different SiO2 layer thicknesses have been deposited by the plasma enhanced chemical vapor deposition technique, and crystallized Si quantum dot (Si-QD)/SiO2 multilayer films are obtained after annealing at 1100 °C. The photoluminescence (PL) intensity of the multilayer films increases significantly with increasing SiO2 layer thickness, and the PL peak shifts from 1.25 eV to 1.34 eV. The PL excitation spectra indicate that the maximal PL excitation intensity is located at 4.1 eV, and an excitation–transfer mechanism exists in the excitation processes. The PL decay time for a certain wavelength is a constant when the SiO2 thickness is larger than 2 nm, and a slow PL decay process is obtained when the SiO2 layer is 1 nm. In addition, the PL peak shifts toward high energy with decreasing temperature only when the SiO2 layer is thick enough. Detailed analyses show that the mechanism of PL changes from the quantum confinement effect to interface defects with decreasing SiO2 layer thickness.  相似文献   

6.
非晶Si/SiO2超晶格结构的交流电致发光   总被引:1,自引:0,他引:1  
《发光学报》2000,21(1):24-27
设计并用磁控溅射方法制备了非晶Si/SiO  相似文献   

7.
X-ray reflectivity (XRR) is a non-destructive, accurate and fast technique for evaluating film density. Indeed, sample-goniometer alignment is a critical experimental factor and the overriding error source in XRR density determination. With commercial single-wavelength X-ray reflectometers, alignment is difficult to control and strongly depends on the operator. In the present work, the contribution of misalignment on density evaluation error is discussed, and a novel procedure (named XRR-density evaluation or XRR-DE method) to minimize the problem will be presented. The method allows to overcome the alignment step through the extrapolation of the correct density value from appropriate non-specular XRR data sets. This procedure is operator independent and suitable for commercial single-wavelength X-ray reflectometers. To test the XRR-DE method, single crystals of TiO2 and SrTiO3 were used. In both cases the determined densities differed from the nominal ones less than 5.5%. Thus, the XRR-DE method can be successfully applied to evaluate the density of thin films for which only optical reflectivity is today used. The advantage is that this method can be considered thickness independent.  相似文献   

8.
In this report we present grazing incidence X-ray reflectivity (GIXR) study of SiO2/Si(0 0 1) system. We have analysed the X-ray reflectivity data using recursive formalism based on matrix method and distorted wave Born approximation (DWBA). From the analysis of the reflectivity data we could obtain the electron density profile (EDP) at the interface of the dielectric SiO2 film and the Si(0 0 1) substrate. The EDP obtained from the matrix method follows the DWBA scheme only when two transition layers are considered at the interface of SiO2/Si. The layer which is in proximity with the Si substrate has a higher electron density value than the Si and SiO2 values and it appears as a maximum in the EDP. The layer which is in proximity with the dielectric SiO2 layer has an electron density value lower than the SiO2 value and it appears as a minimum in the EDP. When the thickness of the SiO2 layer is increased the lower density layer diminishes and the higher density layer persists.  相似文献   

9.
In the present work we aim to study the structural and surface morphological characteristics of divalent cation (cadmium ion, Cd2+) induced thin mono- to multilayer films of fatty acids such as arachidic acid and stearic acid prepared by the Langmuir–Blodgett (LB) technique. These ultra thin films of various numbers of layers were studied by X-ray diffraction (XRD), X-ray reflectivity (XRR) and Atomic Force Microscopy (AFM). In this specific Y-type deposition, it was found that as the individual layer thickness increases, the corresponding layer by layer interfacial electron density of the thin films decreases. Since the fatty acid chain tries to maintain its minimum value of cross-sectional area, tilting occurs with respect to its nearest neighbor. The tilt angle calculated for 9 layers of cadmium arachidate (CdA2) and cadmium stearate (CdSt2) are 18° and 19.5°, respectively. An asymmetric air gap of thickness ∼3 Å was also seen between the tail parts of 2 molecular chains. The RMS roughness and average height factors calculated through AFM studies show non-uniform surface morphology of both CdA2 and CdSt2, although the calculated topographic variations were found to have more irregularity in case of CdSt2 than in case of CdA2.  相似文献   

10.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

11.
Ba0.6Sr0.4TiO3 thin films were deposited on Pt/SiO2/Si substrate by radio frequency magnetron sputtering. High-resolution transmission electron microscopy (HRTEM) observation shows that there is a transition layer at BST/Pt interface, and the layer is about 7-8 nm thickness. It is found that the transition layer was diminished to about 2-3 nm thickness by reducing the initial RF sputtering power. X-ray photoelectron spectroscopy (XPS) depth profiles show that high Ti atomic concentration results in a thick interfacial transition layer. Moreover, the symmetry ν of ?r-V curve of BST thin film is enhanced from 52.37 to 95.98%. Meanwhile, the tunability, difference of negative and positive remanent polarization (Pr), and that of coercive field (EC) are remarkably improved.  相似文献   

12.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

13.
Silicon nanocrystals (nc-Si) have gained great interest due to their excellent optical and electronic properties and their applications in optoelectronics. The aim of this work is the study of growth mechanism of nc-Si into a-SiO2 matrix from SiO/SiO2 multilayer annealing, using non-destructive and destructive techniques. The multilayer were grown by e-beam evaporation from SiO and SiO2 materials and annealing at temperatures up to 1100 °C in N2 atmosphere. X-rays reflectivity (XRR) and high resolution transmission electron microscopy (HRTEM) were used for the structural characterization and spectroscopic ellipsometry in IR (FTIRSE) energy region for the study of the bonding structure. The ellipsometric results gave a clear evidence of the formation of an a-SiO2 matrix after the annealing process. The XRR data showed that the density is being increased in the range from 25 to 1100 °C. Finally, the HRTEM characterization proved the formation of nc-Si. Using the above results, we describe the growth mechanism of nc-Si into SiO2 matrix under N2 atmosphere.  相似文献   

14.
This paper investigates the interfacial characteristics of LaAlO3 (LAO) and LaAlOxNy (LAON) films deposited directly on silicon substrates by the pulsed-laser deposition technique. High-resolution transmission electron microscopy (HRTEM) pictures indicate that an interfacial reaction between LAO and Si often exists. The interfacial layer thickness of LAO films deposited in a nitrogen ambient atmosphere is smaller than that of LAO films deposited in an oxygen ambient atmosphere. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were used to study the composition of the interfacial layer. The shift of the La 3d photoelectron peak to a higher binding energy compared to LaAlO3, the shift of the Al 2p peak to a higher binding energy compared to LaAlO3, the shift of the Si 2p peak to a lower binding energy compared to SiO2 and the intermediate location of the O 1s peak compared to LaAlO3 and SiO2 indicate the existence of a La–Al–Si–O bonding structure, which was also proved by the AES depth profile of LAO films. It can be concluded that the interfacial layer is not simply SiO2 but a compound of La–Al–Si–O. PACS 77.84.Bw; 77.84.-s; 77.55.+f  相似文献   

15.
Fe/SiO2 particles with core/shell structure were prepared by coating silica on the surface of a commercial spherical carbonyl iron via the hydrolysis process of tetraethyl orthosilicate (TEOS). The electromagnetic performance of commercial carbonyl iron and as-prepared Fe/SiO2 particles was studied theoretically and experimentally. As predicted by the theoretical calculation based on the Bruggeman formula and the LandauLifshitzGilbert (LLG) theory, the insulating surface layer of silica was effective to reduce the permittivity parameters of pure carbonyl iron. The measured results showed good agreement with the theoretical prediction. Although there was a little decrease in the permeability of the Fe/SiO2 core/shell particles, a better impedance match especially at higher frequency range was obtained when used as a microwave absorber. The reflection loss (RL) curves show that the lowest reflection loss of Fe/Epoxy composite (−20.5 GHz) was obtained corresponding to the frequency of 8.5 GHz when the thickness of the absorber was 3 mm. A different trend was observed in Fe/SiO2/Epoxy composite. The reflection loss value got lower by decreasing the thickness of absorbers. At the thickness of 2.2 mm, a relative low reflection loss (−17 GHz) corresponding to the frequency of 13.6 GHz was obtained. Compared with the Fe/Epoxy composite, the improvement on shifting the reflection loss peak to higher frequency and on reducing the optimal thickness of absorbers was made by Fe/SiO2/Epoxy composite.  相似文献   

16.
An understanding of the exact structural makeup of dielectric interface is crucial for development of novel gate materials. In this paper a study of the HfO2/Si interface created by the low-temperature deposition ultrathin stoichiometric HfO2 on Si substrates by reactive sputtering is presented. Analysis, quantification and calculation of layer thickness of an HfO2/Hf-Si-Ox/SiO2 gate stack dielectrics have been performed, using X-ray photoelectron spectroscopy (XPS) depth profile method, angle resolved XPS and interface modeling by XPS data processing software. The results obtained were found to be in good agreement with the high frequency capacitance-voltage (C-V) measurements. The results suggest a development of a complex three layer dielectric stack, including hafnium dioxide layer, a narrow interface of hafnium silicate and broad region of oxygen diffusion into silicon wafer. The diffusion of oxygen was found particularly detrimental to the electrical properties of the stack, as this oxygen concentration gradient leads to the formation of suboxides of silicon with a lower permittivity, κ.  相似文献   

17.
Hf-doped Ta2O5 thin films are studied with respect to their composition, dielectric and electrical properties. The incorporation of Hf is performed by sputtering of a 0.7 nm thick Hf layer on top of Ta2O5 and subsequent annealing to stimulate diffusion of Hf into Ta2O5 and their intermixing. The elemental in-depth distribution of the films is investigated by the time of flight secondary ion mass spectroscopy (ToF-SIMS), which has revealed that Hf and Ta2O5 are intermixed throughout the whole thickness. Two sub-layers exist in all the samples - an upper homogeneous Hf-doped Ta2O5 sub-layer and a near interfacial region which is a mixture of Ta- and Si-oxides. The X-ray reflectivity (XRR) analysis shows existence of interfacial layer with a thickness of about 1.9-2 nm, irrespectively of the total thickness of the stacks. Metal-oxide-Si structures with Ru and RuO2 metal electrodes have been prepared and investigated in terms of dielectric constant, effective work function (EWF) and interfacial layer parameters. The influence of post-metallization annealing steps on these parameters was also studied.  相似文献   

18.
The present study reports the effect of swift heavy ion irradiation on structural and magnetic properties of sputtered W/Fe multilayer structure (MLS) having bilayer compositions of [W(10 Å)/Fe(20 Å)]10BL. The MLS is irradiated by 120 MeV Au9+ ions of fluences 1×1013 and 4×1013 ions/cm2. Techniques like X-ray reflectivity (XRR), cross-sectional transmission electron microscopy (X-TEM) and DC magnetization with a vibrating sample magnetometer (VSM) are used for structural and magnetic characterization of pristine and irradiated MLS. Analysis of XRR data using Parratt’s formalism shows a significant increase in W/Fe layer roughness. X-TEM studies reveal that intra-layer microstructure of Fe layers in MLS becomes nano-crystalline on irradiation. DC magnetization study shows that with spacer layer thickness interlayer coupling changes between ferromagnetic to antiferromagnetic.  相似文献   

19.
Angle resolved XPS (ARXPS) is a powerful tool for the determination of the thickness of ultra-thin films. In the case of high-k dielectric layers, the technique is capable of measuring the thickness of both the high-k layer and intermediate layers of silicon dioxide or metal silicate. The values for layer thickness are in close agreement with those generated by a variety of other techniques. As well as knowing the thickness of these layers, it is important to determine whether the layers are continuous or whether the coverage of the high-k layer is only partial. Using ARXPS, a method has been developed to determine whether the coverage of the high-k material is continuous and, if not, to calculate the fraction of the surface that is covered. The method is described with reference to the layers of Al2O3 grown on SiO2 using atomic layer deposition (ALD). The method is then applied to HfO2 layers produced using ALD on silicon wafers whose surfaces had received three different types of surface treatment. The way in which the layers grow and the nature of the resulting layer were found to depend upon the pre-treatment method. For example, growth on a thermal silicon dioxide surface resulted in complete coverage of HfO2 after fewer ALD cycles than layers grown on an H-terminated surface. The results from ARXPS are compared with those obtained from ToF SIMS that have been shown earlier to be a valuable alternative to the LEIS analysis [1].  相似文献   

20.
Yo-Shan Lu 《Surface science》2007,601(18):3788-3791
Using atomic force microscope (AFM) tip, local large-area oxide bumps were induced on a native SiO2 layer applied with a static 10 V in an ambient surrounding. It can be seen in the backscattered electron (BE) images that the oxide bumps were SiOx layer, not the native SiO2 layer. Also, the spectra of energy dispersive X-ray spectrometer (EDS) displayed that the oxide bumps contained oxygen more than did the native SiO2 layer, indicating that the O/Si ratio of the oxide bump is greater than two. A comparison of the growth rates of the point oxide protrusions on the oxide bumps and on the native SiO2, can be used to directly determined the composition stoichiometry (the O/Si ratio (=x)) of the oxide bumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号