首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new multicomponent Co-based catalysts with additives of group 8 metal and rare earth elements and supported on alumina have been tested in the dry and steam conversion of a model biogas. The processes were carried out in a flow quartz reactor under the following conditions: atmospheric pressure, a gas hourly space velocity of 1000 h?1 and temperatures of 300–800°C. The catalysts were characterised using electron microscopy, BET and X-ray analysis. The methane is almost completely converted in the dry reforming of biogas at T≤800°C. Synthesis gas with a ratio of H2/CO>1.0 is a main product of biogas reforming over the multicomponent catalysts studied. Adding steam in a feed composition increases both the methane conversion and the hydrogen yield at lower temperatures. Almost complete methane conversion occurs at T<750°C in the steam reforming of biogas. The catalysts are highly effective and exhibit stable activity throughout 100 h of continuous testing.   相似文献   

2.
Catalysts based on uranium oxides were systematically studied for the first time. Catalysts containing various amounts of uranium oxides (5 and 15%) supported on alumina and mixed Ni-U/Al2O3 catalysts were synthesized. The uranium oxide catalysts were characterized using the thermal desorption of argon, the low-temperature adsorption of nitrogen, X-ray diffraction analysis, and temperature-programmed reduction with hydrogen and CO. The effects of composition, preparation conditions, and thermal treatment on physicochemical properties and catalytic activity in the reactions of methane and butane oxidation, the steam and carbon dioxide reforming of methane, and the partial oxidation of methane were studied. It was found that a catalyst containing 5% U on alumina calcined at 1000°C was most active in the reaction of high-temperature methane oxidation. For the Ni-U/Al2O3 catalysts containing various uranium amounts (from 0 to 30%), the introduction of uranium as a catalyst constituent considerably increased the catalytic activity in methane steam reforming and partial oxidation.  相似文献   

3.
Compressed liquid densities for propane—normal butane mixtures are reported at six temperatures between 10 and 60°C. For each isotherm, there are at least seven compositions ranging between 10 and 75 mol% propane at pressures from near saturation up to 9.65 MPa. The derived excess volumes are negative and represent a maximum of 0.5 percent of the mixture volume at 10°C. At 60°C, the excess volume can be up to 2.2% of the mixture volume. In addition to the binary data, limited density measurements were made on ternary mixtures containing up to 17 mol% ethane.  相似文献   

4.
Jordan oil shale from El-Lajjun deposit was pyrolysed in a fixed-bed pyrolysis reactor and the influence of the pyrolysis temperature between 400 to 620°C and the influence of the pyrolysis atmosphere using nitrogen and nitrogen/steam on the product yield and gas composition were investigated. The gases analysed were H2, CO, CO2 and hydrocarbons from C1 to C4. The results showed for both nitrogen and nitrogen/steam that increase the pyrolysis bed temperature from 400 to 520°C resulted in a significant increase in the oil yield, after which temperature the oil yield decreased. The alkene/alkane ratio including ethene/ethane, propene/propane, and butene/butane ratios, can be used as an indication of pyrolysis temperature and the magnitude of cracking reactions. Increasing alkene/alkane ratio occurring with increasing pyrolysis temperature. The alkene/alkane ratio for nitrogen/steam pyrolysis atmosphere was lower than the one found under nitrogen atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The conversion of C1–C4 hydrocarbons into gaseous and liquid products in a dielectric barrier discharge plasma in the presence of water has been studied. The formation of a deposit on the electrode surface is prevented by introducing water in the liquid state into a gaseous hydrocarbon stream, a finding that has been confirmed by IR spectroscopic study of the electrode surface. Hydrogen and C2+ hydrocarbons have been detected among the gaseous products of conversion, the liquid products being represented by C6–C10+ alkanes. The total liquid products have amounted to 13.4, 26.0, or 36.6% for the methane, propane, or n-butane conversion, respectively. A 10% propane or butane admixture to methane increases the yield of the liquid products to make 22.0 and 31.7% for the methane–propane and the methane–butane mixture, respectively.  相似文献   

6.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

7.
New catalysts have been developed for the production of synthesis gas via a resource-saving and environmentally friendly process—dry reforming of methane. The catalysts are fabricated from NdCaCo1–xNi x On precursors (x = 0, 0.2, 0.4, 0.6, 0.8, 1) synthesized by a ceramic method. According to X-ray powder diffraction, when reacting with an equimolar CH4/CO2 mixture at 800–900°С, the precursors are converted into a mixture of neodymium and calcium oxides and cobalt and nickel metals. The catalyst based on NdCaNiO n at 850°С has ensured high conversions of methane (91%) and CO2 (86%) at СО and hydrogen yields of 88 and 78%, respectively. At 940°С, the yield of CO is close to the quantitative one (97%).  相似文献   

8.
《Fluid Phase Equilibria》1999,157(2):285-297
Cloud-point data for the system poly(methyl methacrylate) (PMMA)–CO2–methyl methacrylate (MMA) are measured in the temperature range of 26 to 170°C, to pressures as high as 2500 bar, and with cosolvent concentrations of 10.4, 28.9, and 48.4 wt.%. PMMA does not dissolve in pure CO2 to 255°C and 2550 bar. The cloud-point curve for the PMMA–CO2–10.4 wt.% MMA system exhibits a negative slope that reaches 2500 bar at 105°C. With 28.9 wt.% MMA the cloud-point curve remains relatively flat at ∼900 bar for temperatures between 25 and 170°C. With 48.4 wt.% MMA the cloud-point curve exhibits a positive slope that extends to 20°C and ∼100 bar. Pressure-composition isotherms are also reported for the CO2–MMA system at 40.0, 80.0, 105.5°C. This system exhibits type-I phase behavior with a continuous mixture–critical curve. The Peng–Robinson (PR) and SAFT equations of state model the CO2–MMA data reasonably well without any binary interaction parameters, although the PR equation provides a better representation of the mixture-critical region. It is not possible to obtain even a qualitative fit of the PMMA–MMA–CO2 data with the SAFT equation of state. The SAFT model qualitatively shows that the cloud-point pressure decreases with increasing MMA concentration and that the cloud-point curve exhibits a positive slope for very high concentrations of MMA in solution.  相似文献   

9.
We reported γ‐alumina supported molybdenum phosphide (MoP) catalysts as a novel catalyst for sulfur‐resistant methanation reaction. The precursors of the catalyst were prepared by impregnation method and the effect of reduction temperatures (550 °C, 600 °C, 650 °C) of the precursors for sulfur‐resistant methanation was examined. The results indicated catalyst obtained by lower reduction temperature delivered better sulfur‐resistant methanation performance. Meanwhile, the influence of H2/CO ratios and H2S content was also investigated. The results indicated that high H2/CO ratio and low H2S content was favorable for methanation of MoP catalysts. The catalysts were characterized by N2 adsorption–desorption, XRD, XPS and TEM. The results confirmed that the MoP phase was formed on all the catalysts and the physicochemical properties of the samples influenced the performance for sulfur‐resistant methanation.  相似文献   

10.

CO2 and steam/CO2 electroreduction to CO and methane in solid oxide electrolytic cells (SOEC) has gained major attention in the past few years. This work evaluates, for the very first time, the performance of two different ZnO–Ag cathodes: one where ZnO nanopowder was mixed with Ag powder for preparing the cathode ink (ZnOmix–Ag cathode) and the other one where Ag cathode was infiltrated with a zinc nitrate solution (ZnOinf –Ag cathode). ZnOmix–Ag cathode had a better distribution of ZnO particles throughout the cathode, resulting in almost double CO generation while electrolysing both dry CO2 and H2/CO2 (4:1 v/v). A maximum overall CO2 conversion of 48% (in H2/CO2) at 1.7 V and 700 °C clearly indicated that as low as 5 wt% zinc loading is capable of CO2 electroreduction. It was further revealed that for ZnOinf –Ag cathode, most of CO generation took place through RWGS reaction, but for ZnOmix–Ag cathode, it was the synergistic effect of both RWGS reaction and CO2 electrolysis. Although ZnOinf –Ag cathode produced trace amount of methane at higher voltages, with ZnOmix–Ag cathode, there was absolutely no methane. This seems to be due to strong electronic interaction between Zn and Ag that might have suppressed the catalytic activity of the cathode towards methanation.

  相似文献   

11.
The present work aims to investigate several kinetic aspects of catalytic combustion of the stoichiometric propane–air mixture on a platinum wire in the presence of progressive CO2 dilution, using a micro-calorimetric method. The method allowed the determination of the induction periods and of the reaction rates during transient and steady-state regimes at different initial pressures P 0 (10–101 kPa), wire temperatures T w (470–575 K) and gas-phase composition. The kinetic parameters were evaluated from regression analysis using empirical and mechanistic models. The dilution with CO2 of the stoichiometric propane–air mixture (4.02% propane) was 10, 20, 30, 40, 50%. For additions equal to or greater than 23%, the gaseous system is outside the flammability limits reported in the literature. The kinetic characteristics of the catalytic combustion remain similar for the whole range, even for 50% CO2 addition when the propane concentration in mixture diminishes to 2%, a concentration smaller than the lower explosion limit in air in normal conditions.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(3):277-282
Ni7.5/NaY catalysts were prepared using two different methods, the incipient wetness impregnation method and the “two-solvent” method. These catalysts were characterised by N2 sorption, XRD, TEM and TPR. Their activity and stability in the dry reforming of methane were tested at atmospheric pressure under an equimolar mixture of methane and carbon dioxide. Three different Ni species, very small, spherical, and layers of nickel silicate were observed by TEM. The preparation by the two-solvent method led to a better dispersion of the active phase as well as to better activity and stability. These catalysts were promoted with small amounts (0.1 wt%) of rhodium. Rhodium facilitates the reducibility and greatly enhances catalytic activity. A complete conversion (100%) for CH4 and CO2 over the Rh promoted catalyst is achieved at 584 °C and 559 °C respectively, while for the non-promoted Ni7.5/NaY catalyst, only a 60% conversion rate for CH4 and CO2 is reached at the same temperatures.  相似文献   

13.
The title compound reacts with molecular hydrogen at 60°C giving rise to the homometallic complexes Fe(CO)5 and Co2(CO)8, and a very rich mixture of gaseous hydrocarbons (e.g. butenes from partial hydrogenation, butane from total hydrogenation and methane and propene from selective hydrogenolysis of the organic chain).The influence of concentration of the title complex, and partial pressure of hydrogen or carbon monoxide on the hydrogenation rate have been investigated. Although an unequivocal mechanism cannot be ascertained from the kinetic data owing to the complexity of the reaction, the pattern of products strongly indicates that the σ-interaction between the iron atom and the organic chain is preserved in the transition state.  相似文献   

14.
《印度化学会志》2023,100(1):100854
The sorption enhanced reformer concept breaks the thermodynamic limits of steam methane reforming and water-gas shift reactions with selective CO2 removal to produce more H2. In this paper, we propose a dynamic kinetic model for sorption-enhanced steam reformers (SERs) integrated with biomass gasifiers. An analysis of operating conditions was conducted to examine high purity hydrogen production. The kinetic model was validated with published literature results at different reactor pressures (5-20 bar), steam/carbon ratios (2-5), and reactor temperatures (673K–1023K). This study shows that biomass gasifiers can be integrated with SER reactors to produce high purity H2.  相似文献   

15.
《Mendeleev Communications》2023,33(4):574-576
The ignition temperatures and effective activation energies of the ignition limits of mixtures (40–70% H2 + 60–30% CH4)stoich + air over Rh were experimentally determined at a pressure of 1 atm in the temperature range 20–300 °C. Over an ignition-treated Rh surface, the ignition temperature of a mixture of 70% H2 + 30% methane + air is 62 °C. This indicates the potential of using Rh to markedly lower the ignition temperature of fuels based on hydrogen–methane mixtures.  相似文献   

16.
《Comptes Rendus Chimie》2015,18(11):1205-1210
Nickel–aluminium and magnesium–aluminium hydrotalcites were prepared by co-precipitation and subsequently submitted to calcination. The mixed oxides obtained from the thermal decomposition of the synthesized materials were characterized by XRD, H2-TPR, N2 sorption and elemental analysis and subsequently tested in the reaction of methane dry reforming (DRM) in the presence of excess of methane (CH4/CO2/Ar = 2/1/7). DMR in the presence of the nickel-containing hydrotalcite-derived material showed CH4 and CO2 conversions of ca. 50% at 550 °C. The high values of the H2/CO molar ratio indicate that at 550 °C methane decomposition was strongly influencing the DRM process. The sample reduced at 900 °C showed better catalytic performance than the sample activated at 550 °C. The catalytic performance in isothermal conditions from 550 °C to 750 °C was also determined.  相似文献   

17.
A sol–gel route to synthesize nanocrystalline praseodymium-, samarium- and gadolinium-doped ceria powders for solid oxides fuel Cells SOFCs is presented. The method involves metal nitrates with propionic acid (both as chelating ligand and solvent), gel formation, liquid nitrogen quenching, drying at 150 °C/24 h, and finally decomposition at 450 °C in nitrogen followed by calcination at 650 °C in air. TG–DTA, BET, XRD, FTIR, UV–vis and catalytic tests were used to characterize the samples. Ce0.8Pr0.2O2?δ sample exhibited the best catalytic performance in methane steam reforming under water deficient conditions, closely followed by Ce0.9Gd0.1O2?δ, Ce0.8Sm0.2O2?δ and Ce0.8Gd0.2O2?δ catalysts. The superior catalytic performance of Ce0.8Pr0.2O2?δ sample was attributed to the existence of praseodymium species (Pr4+/Pr3+) strongly interacting with ceria. The two systems act synergistically in the catalytic steam reforming of methane.  相似文献   

18.
Process in which sulfur is produced from a gas containing 25–55% SO2 was studied in order to evaluate the real efficiency of the catalytic post-reduction of sulfur dioxide in a pilot unit with gas flow rate of up to 1.2 nm3 h–1 at the following temperatures (°C): thermal stage 850–1100, catalytic conversion 350–570, and Claus reactor 219–279. It was found that the conversion at 400–550°C and space velocity of 1600 h–1 on AOK-78-57 promoted aluminum oxide catalyst provides full processing of organosulfur compounds (CS2 and COS). The temperature dependence of the conversion/generation of hydrogen sulfide on AOK-78-57 catalyst corresponds to the equilibrium model. It was experimentally confirmed that the homogeneous reduction of sulfur dioxide gas with methane at T ≈ 1100°C, with catalytic post-reduction at 400–550°C and subsequent Claus-conversion of the reduced gas at 230–260°C, provide a sufficiently deep (by 92–95%) general processing of sulfur dioxide gas to sulfur.  相似文献   

19.
Methane pyrolysis and steam reforming were studied over a series of nickel catalysts (Ni-Al2O3, Ni/MgO, and Ni/LiAlO2) under the same conditions (650-750°C, PCH4 = 0.001-0.03 MPa). Unlike heterogeneous reaction of pyrolysis, some of the steps of steam reforming of methane occur in the gas phase. When gasphase reactions were suppressed, the rate and activation energy of steam reforming are close to the corresponding kinetic characteristics for pyrolysis. Hypothetically, the rate-limiting step of the process is the dissociative adsorption of methane on nickel in this case.  相似文献   

20.
CO methanation on Ni/CeO2 has recently received increasing attention. However, the low-temperature activity and carbon resistance of Ni/CeO2 still need to be improved. In this study, plasma decomposition of nickel nitrate was performed at ca. 150°C and atmospheric pressure. This was followed by hydrogen reduction at 500 °C in the absence of plasma, and a highly dispersed Ni/CeO2 catalyst was obtained with improved CO adsorption and enhanced metal-support interaction. The plasma-decomposed catalyst showed significantly improved low-temperature activity with high methane selectivity (up to 100%) and enhanced carbon resistance for CO methanation. For example, at 250°C, the plasma-decomposed catalyst showed a CO conversion of 96.8% with high methane selectivity (almost 100%), whereas the CO conversion was only 14.7% for a thermally decomposed catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号