首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
采用一步法静电纺丝技术制备了具有超亲水特性的氧化锰/碳纳米纤维(MnO_x/CNFs)复合柔性膜电极材料,并通过X射线衍射、扫描电子显微镜和透射电子显微镜等对复合材料进行了表征.电化学性能测试结果表明,复合材料的电容性能优于单一材料,醋酸锰质量分数为40%时制得的复合纳米纤维电极(MC-4)在1 A/g电流密度下,于2 mol/L KOH电解液中的比电容高达1112.5 F/g,10 A/g电流密度下循环3000次比容量保持在93.4%,具有很好的稳定性.MnO_x/CNFs复合材料电化学性能增强一方面是由于三维超亲水纤维膜结构有利于电解液的快速浸润渗透,从而极大缩短了传输到材料基质的有效路径;另一方面是由于碳和MnO_x的协同效应,包裹在MnO_x粒子周围的碳层避免了MnO_x在充放电过程中的体积膨胀效应,这2种叠加机制促进了电化学性能的提升.  相似文献   

2.
袁晓燕  盛京 《应用化学》1997,14(5):95-97
氨基化聚丙烯腈膜的氨基含量和亲水性能袁晓燕盛京*沈宁祥许锦路1吕晓龙2(天津大学材料科学与工程系天津300072)关键词氨基化,聚丙烯腈膜,氨基含量,亲水性1996-12-01收稿,1997-06-19修回1本校九六届毕业生,现在天津化工研究院工作2...  相似文献   

3.
Summary: Nanofibrous membranes that possess reactive groups are fabricated by the electrospinning process from PANCAA solutions that contain MWCNTs. Field emission scanning electron microscopy is used to evaluate the morphology and diameter of the nanofibers. Potentials for applying these nanofibrous membranes to immobilize redox enzymes by covalent bonding are explored. It is envisaged that the electrospun nanofibrous membranes could provide a large specific area and the MWCNTs could donate/accept electrons for the immobilized redox enzymes. Results indicate that, after blending with MWCNTs, the diameter of the PANCAA nanofiber increases slightly. The PANCAA/MWCNT nanofibrous membranes immobilize more enzymes than that without MWCNTs. Moreover, as the concentration of the MWCNTs increases, the activity of the immobilized catalase is enhanced by about 42%, which is mainly attributed to the promoted electron transfer through charge‐transfer complexes and the π system of MWCNTs.

The covalent immobilization of redox enzymes, such as catalase, on a PANCAA/MWCNTs nanofiber.  相似文献   


4.
Functional nanofibrous membranes fabricated by electrospinning technology have attracted much attention in the removal of heavy metal ions from contaminated wastewater. The high specific surface area, high porosity and ease of functionality create an enhanced throughput and high adsorption capacity of the nanofibrous membrane. However, the relatively poor mechanical properties of the membrane with a non-woven nanofibrous structure are one of the major concerns, which can limit the applications in wastewater treatment. Different strategies and methodologies were explored to address the problems and were reviewed in this work, highlighting the possibilities of overcoming the poor mechanical properties of the nanofibrous membrane and to ensure the recyclability and reusability of the membrane during the adsorption process.  相似文献   

5.
Water flux and hydrophobic durability play important roles in membrane distillation(MD) applications. Compared with the method of adsorbing nanoparticles by electrostatic adsorption, the surface roughness constructed by chemical bonding is more conducive to the performance of membrane. This paper reports a facile approach to fabricating superhydrophobic fluoroalkyl silane/polydimethylsiloxane@FeOOH@stabilized polyacrylonitrile(FAS/PDMS@FeOOH@SPAN) nanofibrous membrane (NFM) with outstanding hierarchical structures, aiming to achieve efficient and stable performance in MD. Electrospun polyacrylonitrile(PAN) membrane after peroxidation was chosen as the base membrane, followed by in-situ synthesis of iron oxyhydroxide and liquid-phase silanization. We tested the characteristics of FAS/PDMS@FeOOH@SPAN NFM in each preparation stage and its performance in direct contact membrane distillation(DCMD). The chemical bond between iron oxyhydroxide and the membrane is stronger, making the rough structure steady and dense. The FAS/PDMS@FeOOH@SPAN NFM exhibited a water contact angle of 155.4° and excellent hydrophobicity towards different pollutants. Besides, it showed satisfied properties with a water flux of 24.7 L·m-2·h-1, a high salts rejection of ca. 100% and an extended-term stability in DCMD using hypersaline water(10%, mass ratio). It is believed that this novel study proposes a universal and efficient method to fabricate a superhydrophobic surface and has great potential for high-salinity wastewater treatment in MD.  相似文献   

6.
静电纺丝是一种简单有效的制备聚合物纳米纤维的技术,在组织工程、药物控释和传感器等方面具有广泛的应用。采用静电纺丝技术制备得到的纳米纤维膜具有比表面积大、孔隙率高和易于分离回收等优点,可以作为一种优良的酶固定化载体,目前在酶固定化领域受到了广泛的关注。本文综述了近年来静电纺丝纳米纤维膜固定化酶的研究进展,在阐述静电纺丝纳米纤维膜制备技术的基础上,详细介绍了纳米纤维膜表面担载法和包埋法固定化酶的原理和方法,分析了不同固定化方法的优缺点,并讨论了静电纺丝纳米纤维膜固定化酶的应用前景,对静电纺丝纳米纤维膜固定化酶的发展方向进行了展望。  相似文献   

7.
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa−1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.  相似文献   

8.
Membranes with special functionalities, such as self‐cleaning, especially those for oil/water separation, have attracted much attention due to their wide applications. However, they are difficult to recycle and reuse after being damaged. Herein, we put forward a new N‐substituted polyurethane membrane concept with self‐healing ability to address this challenge. The membrane obtained by electrospinning has a self‐cleaning surface with an excellent self‐healing ability. Importantly, by tuning the membrane composition, the membrane exhibits different wettability for effective separation of oil/water mixtures and water‐in‐oil emulsions, whilst still displaying a self‐healing ability and durability against damage. To the best of our knowledge, this is the first report to demonstrate a self‐healing membrane for oil/water separation, which provides the fundamental research for the development of advanced oil/water separation materials.  相似文献   

9.
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.  相似文献   

10.
聚乙丙交酯电纺纳米纤维膜的等离子体改性及性能研究   总被引:1,自引:0,他引:1  
采用等离子体表面处理的方法, 通过正交实验设计, 以纤维膜表面引入的氮含量为响应变量, 确定了NH3等离子体改性PLGA电纺纤维膜的最佳条件, 并在PLGA纤维膜表面成功地引入了功能性氨基基团. 研究结果表明, 改性后PLGA电纺纤维膜的力学性能有所降低, 但表面亲水性明显增强.  相似文献   

11.
Developing a porous separation membrane that can efficiently separate oil–water emulsions still represents a challenge. In this study, nanofiber membranes with polydopamine clusters polymerized and embedded on the surface were successfully constructed using a solution blow-spinning process. The hierarchical surface structure enhanced the selective wettability, superhydrophilicity in air (≈0°), and underwater oleophobicity (≈160.2°) of the membrane. This membrane can effectively separate oil–water emulsions, achieving an excellent permeation flux (1552 Lm−2 h−1) and high separation efficiency (~99.86%) while operating only under the force of gravity. When the external driving pressure was increased to 20 kPa, the separation efficiency hardly changed (99.81%). However, the permeation flux significantly increased to 5894 Lm−2 h−1. These results show that the as-prepared polydopamine nanocluster-embedded nanofiber membrane has an excellent potential for oily wastewater treatment applications.  相似文献   

12.
A new method to modify electrodes with carbon nanotubes (CNT) was developed. Multiwalled carbon nanotubes (MWNT) were adsorbed on the electrospun nylon‐6 nanofibrous membranes (Ny‐6‐NFM) and used as a coating to modify conventional glassy carbon electrodes. The modified electrode was designed for the amperometric detection of sulfhydryl compounds with the potential held at +0.3 V vs. Ag/AgCl. The modified electrode showed a linear response for cysteine up to 0.4 mM (R2=0.997), with a sensitivity of 5.1 µA/mM and a detection limit of 15 µM. Other sulfhydryl compounds showed similar results. After use, the Ny‐6‐NFM was easily peeled off, leaving the bare electrode surface back to its original electrochemical behaviour. This is the first attempt to use a disposable membrane functionalized with MWNT for electroanalytical purposes.  相似文献   

13.
This review addressed the fundamental principles, advantages and challenges of forward osmosis (FO) membrane processes. FO is receiving more and more research attractions because it can concurrently produce clean water with low energy input and generate hydraulic energy (pressure retarded osmosis). FO typically requires zero or low hydraulic driving pressure, therefore the fouling potential of the FO membranes is much lower than conventional pressure-driven membrane processes. However, concentration polarization (CP), especially the internal CP significantly reduces the effective osmotic pressure across the FO membrane, the major driving force for the filtration process. As a result, innovative FO membrane materials like electrospun nanofibers have been explored to make low tortuosity, high porosity, and thin FO membranes with a high rejection rate of solutes and low or zero diffusion of the draw solute. The orientation of the FO membrane with active layer-facing-feed solution has less fouling than active layer-facing-draw solution. In addition, to further decrease the fouling potential, a hydrophilic and more negatively charged membrane is preferred when filtration of natural organic matter (NOM) or alginate in the absence of multivalent cations.  相似文献   

14.
To enhance the mechanical and antibacterial properties of silver nanoparticle impregnated cellulosic fibers, carboxy-cellulose nanocrystals(CCNs) were grafted with chitooligosaccharide(COS), which was used as a stabilizer for silver nanoparticles (AgNPs). Nanofibrous membranes reinforced with silver nanoparticle impregnated cellulosic fibers(CCN-COS-AgNP) were prepared via electrospinning using polyvinyl alcohol(PVA) as a matrix. The effects of CCN-COS-AgNP contents on the morphology, surface composition, mechanical properties, and antibacterial performances of the prepared CCN-COS-AgNP/PVA membranes were examined. The addition of CCN-COS-AgNP certainly improved the mechanical properties and antibacterial performances of the PVA nanofibers. The tensile strength was significantly increased from 4.40 MPa to 8.60 MPa when 8% CCN-COS-AgNP(mass ratio) was introduced. When 10%(mass ratio) CCN-COS-AgNP was added, the nanofibers showed an excellent antibacterial activity for S. aureus(Staphylococcus aureus) and E. coli(Escherichia coli), with the maximum inhibition zones of 2.30 and 1.60 cm, respectively. Moreover, the 2%(mass ratio) CCN-COS-AgNP/PVA fibrous membrane showed 126% cell viability for mg63 human osteoblasts. The electrospun PVA membrane has great potential application in biomedical field.  相似文献   

15.
亚表面引发聚合是一种用于制备共价嵌入型聚合物刷的新型改性策略.该方法在发展高稳定性聚合物刷功能化表界面材料方面具有显著的优势.本工作利用亚表面引发原子转移自由基聚合(sSI-ATRP)对静电纺丝聚丙烯腈(PAN)基纳米纤维膜进行亚表面改性,通过接枝聚N-异丙基丙烯酰胺(PNIPAM)制备了温度响应型纳米纤维油水分离膜(...  相似文献   

16.
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.  相似文献   

17.
Responsive polymer interfacial materials are ideal candidates for controlling surface wetting behavior. Here we developed smart nanostructured electrospun polymer membranes which are capable of switching oil/water wettability using CO2 as the trigger. In particular, the combination of CO2‐responsiveness and porous nanostructure enables the as‐prepared membranes to be used as a novel oil/water on–off switch. We anticipate that the promising versatility and simplicity of this system would not only open up a new way of surface wettability change regulation by gas, but also have obvious advantages in terms of highly controlled oil/water separation and CO2 applications.  相似文献   

18.
Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-loderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase. Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membra...  相似文献   

19.
Abstract

8-Hydroxyquinoline immobilized on polyacrylonitrile hollow fiber membrane was synthesized and used for the preconcentration of cadmium, lead, copper, mangenese, bismuth, indium, cobalt, beryllium and silver in sea water prior to their determination by inductively coupled plasma-mass spectrometry. The optimum experimental conditions such as pH, sample flow rate and volume of eluents were investigated. The concentration factor of at least 300 for analytes of interest in sea water and separation of matrix components can be achieved. The recommended method has been applied for the determination of trace elements in coastal sea water. The results indicated that the recovery ranged from 91% to 107%, and the relative standard deviations were found to be less than 5% for trace elements at ng/L level.  相似文献   

20.
The worsening of air quality is an urgent human health issue of modern society. The outbreak of COVID-19 has made the improvement of air quality even more imperative, both for the general achievement of major health gains and to reduce the critical factors in the transmission of airborne diseases. Thus, the development of solutions for the filtration of airborne pollutants is pivotal. Electrospinning has gained wide attention as an effective fabrication technique for preparing ultrafine fibers which are specifically tailored for air filtration. Nevertheless, the utilization of harmful organic solvents is the major barrier for the large-scale applicability of electrospinning. The use of water-soluble synthetic polymers has attracted increasing attention as a ‘green’ solution in electrospinning. We reported an overview of the last five years of the scientific literature on the use of water-soluble synthetic polymers for the fabrication of multifunctional air filters layers. Most of recent studies have focused on polyvinyl alcohol (PVA). Various modifications of electrospun polymers have been also described. The use of water-soluble synthetic polymers can contribute to the scalability of electrospinning and pave the way to innovative applications. Further studies will be required to fully harness the potentiality of these ‘greener’ electrospinning processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号