首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presented here are computed rates for the thermal unimolecular decomposition of a variety of alkoxy radicals with four‐ and five‐carbon length backbones. Three classes of molecules are examined: alkoxy radicals with saturated hydrocarbon backbones, those with alcohol functional groups, and those with carbonyl functional groups. The chosen species represent many of those found during the combustion of fossil fuels as well as bio‐derived alternatives. Density functional theory calculations were benchmarked against higher level coupled cluster calculations and used to explore the potential energy surfaces of these systems. Transition state theory was used to calculate high‐pressure limit rate coefficients of all radical intermediates in the regimes relevant to atmospheric chemistry and combustion. We show that the assumption that alkoxy radicals quickly decompose via β‐scission to aldehydes and other radicals is not valid for some of the alkoxy radicals investigated in this work. We further illustrate how intra‐H migrations in larger alkoxy radicals with carbonyl and alcohol functional groups can dominate unimolecular decomposition under combustion and atmospheric relevant conditions. Finally, we discuss why carbonyl groups can increase or decrease intra‐H migration barriers depending on their location relative to the transferring H‐atom.  相似文献   

2.
Vinyl alcohols (enols) have been discovered as important intermediates and products in the oxidation and combustion of hydrocarbons, while methyl vinyl ethers are also thought to occur as important combustion intermediates. Vinyl alcohol has been detected in interstellar media, while poly(vinyl alcohol) and poly(methyl vinyl ether) are common polymers. The thermochemical property data on these vinyl alcohols and methyl vinyl ethers is important for understanding their stability, reaction paths, and kinetics in atmospheric and thermal hydrocarbon-oxygen systems. Enthalpies , entropies , and heat capacities (C(p)()(T)) are determined for CH(2)=CHOH, C(*)H=CHOH, CH(2)=C(*)OH, CH(2)=CHOCH(3), C(*)H=CHOCH(3), CH(2)=C(*)OCH(3), and CH(2)=CHOC(*)H(2). Molecular structures, vibrational frequencies, , and C(p)(T) are calculated at the B3LYP/6-31G(d,p) density functional calculation level. Enthalpies are also determined using the composite CBS-Q, CBS-APNO, and G3 methods using isodesmic work reactions to minimize calculation errors. Potential barriers for internal rotors are calculated at the B3LYP/6-31G(d,p) level and used to determine the hindered internal rotational contributions to entropy and heat capacity. The recommended ideal gas phase values calculated in this study are the following (in kcal mol(-1)): -30.0, -28.9 (syn, anti) for CH(2)=CHOH; -25.6, -23.9 for CH(2)=CHOCH(3); 31.3, 33.5 for C(*)H=CHOH; 27.1 for anti-CH(2)=C(*)OH; 35.6, 39.3 for C(*)H=CHOCH(3); 33.5, 32.2 for CH(2)=C(*)OCH(3); 21.3, 22.0 for CH(2)=CHOC(*)H(2). Bond dissociation energies (BDEs) and group additivity contributions are also determined. The BDEs reveal that the O-H, O-CH(3), C-OH, and C-OCH(3) bonds in vinyl alcohol and methyl vinyl ether are similar in energy to those in the aromatic molecules phenol and methyl phenyl ether, being on average around 3 kcal mol(-1) weaker in the vinyl systems. The keto-enol tautomerization enthalpy for the interconversion of vinyl alcohol to acetaldehyde is determined to be -9.7 kcal mol(-1), while the activation energy for this reaction is calculated as 55.9 kcal mol(-1); this is the simplest keto-enol tautomerization and is thought to be important in the reactions of vinyl alcohol. Formation of the formyl methyl radical (vinoxy radical/vinyloxy radical) from both vinyl alcohol and methyl vinyl ether is also shown to be important, and its reactions are discussed briefly.  相似文献   

3.
The parameters of hydrogen bonds formed during acetalization of poly(vinyl alcohol) with butanal are determined via computer-simulation methods. It is shown that alcohol groups involved in the formation of intermolecular hydrogen bonds are the least active in acetalization reactions. The kinetics of the acetalization reactions in 2,4-pentanediol-water-butanal and (vinyl alcohol)-water-butanal systems are studied at various concentrations of alcohols that model a change in the ratio of hydrogen bonds of various types and are realized in the aqueous solutions of poly(vinyl alcohol) and poly(vinyl butyral). The calculated rate constants are in agreement with the computer-simulation-based order of reactivity of alcohol groups involved in hydrogen bonds of various types. It is proposed that the reactivity of residual alcohol groups in a poly(vinyl butyral) macromolecule should increase when a certain conversion of the polymer is attained.  相似文献   

4.
5.
6.
Nanocomposites of poly (vinyl alcohol) with ethylamine modified zirconium phosphate (ZrP-EA) were prepared by solution blending. Their morphologies were elucidated with X-ray diffraction and transmission electron microscopy, while the thermal stability and flammability performance were characterized by thermogravimetric analysis, Fourier transform infrared spectra and microscale combustion calorimetry. It was established that the morphology of the nanocomposites evolved as ZrP-EA content increased. In the nanocomposites, catalytic degradation of the acetate groups remaining in poly (vinyl alcohol) occurred and catalytic carbonization was observed. Microscale combustion calorimetry revealed that the flammability performance of poly (vinyl alcohol) was improved by the introduction of zirconium phosphate nanoplatelets.  相似文献   

7.
We have demonstrated the feasibility and ease of producing quercetin radicals by photoionization with a pulsed 355 nm laser. A conversion efficiency into radicals of 0.4 is routinely achieved throughout the pH range investigated (pH 2–9), and the radical generation is completed within a few ns. No precursor other than the parent compound is needed, and the ionization by-products do not interfere with the further fate of the radicals. With this generation method, we have characterized the quercetin radicals and studied the kinetics of their repairs by co-antioxidants such as ascorbate and 4-aminophenol. Bell-shaped pH dependences of the observed rate constants reflect opposite trends in the availability of the reacting protonation forms of radical and co-antioxidant and even at their maxima mask the much higher true rate constants. Kinetic isotope effects identify the repairs as proton-coupled electron transfers. An examination of which co-antioxidants are capable of repairing the quercetin radicals and which are not confines the bond dissociation energies of quercetin and its monoanion experimentally to 75–77 kcal mol−1 and 72–75 kcal mol−1, a much narrower interval in the case of the former than previously estimated by theoretical calculations.  相似文献   

8.
Journal of Thermal Analysis and Calorimetry - Poly(vinyl alcohol) (PVA) is a binder for electrically controlled solid propellants (ECSPs), whose combustion strongly depends on their decomposition...  相似文献   

9.
Gas-liquid chromatography (GLC) was used to measure Henry's law constants for ethylene, ethane, carbon dioxide, sulfur dioxide, methyl chloride, vinyl acetate, isopropyl alcohol, methyl ethyl ketone, and acetone in liquid poly(vinyl acetate) in the region 125 to 200°C. Retention-time differences were measured relative to nitrogen and corrections for nitrogen's finite solubility were applied; these corrections are significant when measuring the solubilities of sparingly soluble solutes by the GLC method. The effect of GLC column diameter is discussed.  相似文献   

10.
The effective rate constants of autocatalytic reactions taking place in the system Fc-CBr4-aromatic amine are not decreased on passing from a liquid solution to a polymer film in the absence of oxygen. When films containing the above components are covered on both sides with poly(vinyl alcohol) their oxygen content is reduced to a level at which it has no effect on the autocatalytic reactions which produce colored products in the films.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 346–351, February, 1991.  相似文献   

11.
Acid catalyzed poly(vinyl alcohol) (PVA) acetalization was investigated in aqueous medium at 80 °C for a PVA concentration of 8 wt %. The reactant, 10‐undecenal, was composed of a long alkyl chain with a vinyl end group, and the functionalization reaction was studied in heterogeneous media for low reactant concentrations (from 0.33 to 2.0 mol % compared with PVA hydroxyl groups concentration). First, the reaction was scrutinized with pentane‐2,4‐diol, as a model compound of PVA. Besides the expected reaction, the oxidation of the aldehyde into 10‐undecenoic acid in the presence of water was evidenced. This carboxylic acid appeared unreactive toward esterification of pentane‐2,4‐diol and PVA in water. Characterization of acetal stereochemical structure formed on the PVA backbone was performed by NMR spectroscopy in accordance to the model approach. A protocol based on 1H NMR analysis was developed to quantify grafted aldehyde, residual aldehyde, and created carboxylic acid through direct sampling of the reaction medium. Conversions and reaction rate constants were calculated for pH ranging from 1 to 3. Finally, the acetalization yield was found to be enhanced at low pH and, in such conditions, the oxidation reaction contribution was limited. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 661–671  相似文献   

12.
Carbonyls play an important role in atmospheric chemistry due to their formation in the photooxidation of biogenic and anthropogenic volatile organic compounds and their high atmospheric reactivity. The Cl‐initiated kinetics of two α‐diketones (2,3‐pentanedione (PTD) and 2,3‐hexanedione (HEX)) have been determined as well as the OH + HEX rate constant using atmospheric simulation chamber experiments and the relative rate method. Up to three different reference compounds were used to assess robust results. The following rate constants (in cm3 molecule−1 s−1) have been obtained at 298 K: k (Cl + PTD) = (1.6 ± 0.2) × 10−11, k (Cl + HEX) = (8.8 ± 0.4) × 10−11, and k (OH + HEX) = (3.6 ± 0.7) × 10−12 with a global uncertainty of 30%. The present determinations of Cl‐ and OH‐ reaction rate constants for HEX constitute first measurements. Using the present measurements, a recently improved structure–activity relationship for Cl + ketone reactions has been updated by introducing an F (–COCO–) factor of 8.33 × 10−4. Atmospheric lifetime calculations indicate that chlorine‐initiated oxidation may be a significant α‐diketone sink in the marine‐boundary layer or in places where high Cl concentrations may be found.  相似文献   

13.
Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas‐phase reactions of two RO2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO2. This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol.  相似文献   

14.
Butane-1,4-diol was fluoroalkylated by its photoaddition reactions with hexafluoropropene and perfluoro (propyl vinyl) ether under atmospheric pressure, by which monofluoroalkylated and bis-fluoroalkylated products were obtained. 1,3-Diols were completely unreactive under the conditions. 2,2,2-Trifluoroethanol, tert.butyl alcohol and methyl tert.butyl ether appeared to be inert solvents for the additions while acetonitrile quenched the reactions. The reactivity of perfluoro vinyl ethers was studied (tested) in their photoaddition reactions with alkanols that were less regioselective (up to 7% rel.of regioisomer) in comparison with hexafluoropropene. Surprisingly, photo-supported base-induced nucleophilic monoand bis-addition of butane-1,4-diol onto hexafluoropropene was observed in acetonitrile.  相似文献   

15.
Using a relative rate method, rate constants for the gas‐phase reactions of OH radicals with allyl alcohol, 3‐buten‐1‐ol, 3‐buten‐2‐ol, and 2‐methyl‐3‐buten‐2‐ol have been measured at 296 ± 2 K and atmospheric pressure of air. Using 1,3,5‐trimethylbenzene as the reference compound, the rate constants (in units of 10−11 cm3 molecule−1 s−1) were: allyl alcohol, 5.46 ± 0.35; 3‐buten‐1‐ol, 5.50 ± 0.20; 3‐buten‐2‐ol, 5.93 ± 0.23; and 2‐methyl‐3‐buten‐2‐ol, 5.67 ± 0.13; where the indicated errors are two least‐squares standard deviations and do not include the uncertainty in the rate constant for 1,3,5‐trimethylbenzene. The H‐atom abstraction products acrolein and methyl vinyl ketone were observed from the allyl alcohol and 3‐buten‐2‐ol reactions, respectively, with respective yields of 5.5 ± 0.7 and 4.9 ± 1.4%. No evidence for formation of acrolein from 3‐buten‐1‐ol or 3‐buten‐2‐ol was obtained, with upper limits to the acrolein yields of ≤1.2 and ≤0.5%, respectively, being determined. Reaction mechanisms are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 142–147, 2001  相似文献   

16.
Using a relative rate technique, kinetic studies on the gas-phase reactions of OH radicals, ozone, and NO(3) radicals with iso-butyl vinyl ether (iBVE) and tert-butyl vinyl ether (tBVE) have been performed in a 405 L Duran glass chamber at (298 ± 3) K and atmospheric pressure (750 ± 10 Torr) in synthetic air using in situ FTIR spectroscopy to monitor the reactants. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: (1.08 ± 0.23) × 10(-10) and (1.25 ± 0.32) × 10(-10) for the reactions of OH with iBVE and tBVE, respectively; (2.85 ± 0.62) × 10(-16) and (5.30 ± 1.07) × 10(-16) for the ozonolysis of iBVE and tBVE, respectively; and (1.99 ± 0.56) × 10(-12) and (4.81 ± 1.01) × 10(-12) for the reactions of NO(3) with iBVE and tBVE, respectively. The rate coefficients for the NO(3) reactions are first-time determinations. The measured rate coefficients are compared with estimates using current structure activity relationship (SAR) methods and the effects of the alkoxy group on the gas-phase reactivity of the alkyl vinyl ethers toward the oxidants are compared and discussed. In addition, estimates of the tropospheric lifetimes of iBVE and tBVE with respect to their reactions with OH, ozone, and NO(3) for typical OH radical, ozone, and NO(3) radical concentrations are made, and their relevance for the environmental fate of compounds is considered.  相似文献   

17.
This paper is concerned with the mechanisms and rate constants for the decomposition of 1-penten-3-yl, 1-penten-4-yl, and 1-penten-5-yl radicals. They are formed from radical attack on 1-pentene, which is an important decomposition product of normal alkyl radicals with more than 6 carbon atoms in combustion systems. This work is based on related data in the literature. These involve rate constants for the reverse radical addition process under high-pressure conditions, chemical activation experiments, and more recent direct studies. The high-pressure rate constants are based on detailed balance. The energy transfer effects and the pressure dependences of the rate constants are determined through the solution of the master equation and are projected to cover combustion conditions. The low barriers to these reactions make it necessary to treat these thermal reactions as open systems, as in chemical activation studies. The multiple reaction channels make the nature of the pressure effects different from those usually described in standard texts. The order of stability is 1-penten-3-yl approximately 1-penten-4-yl > 1-penten-5-yl and straddles those for the n-alkyl radicals. A key feature in these reactions is the effects traceable to allylic resonance. However, the 50 kJ/mol allylic resonance energy is not fully manifested. The important unsaturated products are 1,3-butadiene, the pentadienes, allyl radicals, and vinyl radicals. The results are compared with the recommendations in the literature, and significant differences are noted. Extensions to larger radicals with similar structures are discussed.  相似文献   

18.
The kinetics of the gas-phase reaction of ozone with unsaturated alcohols, carbonyls, and esters in air have been investigated at atmospheric pressure, ambient temperature (285–295 K), and in the presence of sufficient cyclohexane to scavenge the hydroxyl radical which forms as a product of the ozone-unsaturated compound reaction. The reaction rate constants, in units of 10?18 cm3 molecule?1 s?1, are 0.26 ± 0.05 for acrolein, 1.07 ± 0.05 for 2-ethyl acrolein, 6.0 ± 0.4 for ethyl vinyl ketone, 4.9 ± 0.4 for 3-buten-1-ol, 14.4 ± 2.0 for allyl alcohol, 105 ± 7 for cis-3-hexen-1-ol, 7.5 ± 0.9 for methyl methacrylate, 2.9 ± 0.3 for vinyl acetate, 4.4 ± 0.3 for methyl crotonate, and 8.1 ± 0.3 for the 1,1-disubstituted alkene 2-ethyl-1-butene. Substituent effects on reactivity are discussed by comparison with alkenes and indicate that the reactivity of unsaturated alcohols is the same as that of alkene structural homologues and that the —C(O)OR, —C(O)R, and —CHO groups decrease the reactivity towards ozone as compared to alkyl groups. Estimates are made of the atmospheric persistence of these unsaturated compounds using the kinetic data obtained in this study as input to structure-reactivity and linear free-energy relationships. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The rates of chemical reactions and the dependence of their rate constants on temperature are of central importance in chemistry. Advances in the temperature-range and accuracy of kinetic measurements, principally inspired by the need to provide data for models of combustion, atmospheric, and astrophysical chemistry, show up the inadequacy of the venerable Arrhenius equation--at least, over wide ranges of temperature. This critical review will address the question of how to reach an understanding of the factors that control the rates of 'non-Arrhenius' reactions. It makes use of a number of recent kinetic measurements and shows how developments in advanced forms of transition state theory provide satisfactory explanations of complex kinetic behaviour (72 references).  相似文献   

20.
The O3-initiated oxidation of vinyl propionate is studied using quantum chemistry calculations. Detailed and complete reaction mechanisms are presented which involve the formation of the primary ozonide (POZ), the subsequent decomposition of POZ, the secondary reactions of CH3CH2C(O)OCHO2 (IM4) in the presence of H2O or NO as well as the generation of the secondary ozonide (IM6). Based on the above PESs calculations, the Multichannel Rice–Ramsperger–Kassel–Marcus theory is employed to calculate the total and individual rate constants for major product channels. The rate constants and branching ratios of main products are obtained. The total rate constants are temperature dependent over the whole study temperature range (200–2,000 K), but pressure independent over the range of 0.01–10,000 Torr. In addition, the atmospheric lifetime is estimated in accordance with rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号