首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
铈对Zn-22%Al减振合金组织和力学性能的影响   总被引:8,自引:3,他引:5  
借助于光学显微镜、透射电镜及扫描电镜,采用自然时效、人工时效等热处理工艺,研究了微量Ce对Zn-22%Al减振合金显微组织和力学性能的影响,Ce具有细化Zn-22%Al合金组织并障碍时效时晶粒长大和等轴程度降低的作用,在低于80℃的温轧温度下效时,加Ce和不加Ce的Zn-22%Al合金的强度不随时间的推移而变化。Ce还提高了Zn-22%Al合金的强度和时效时力学性能的稳定性。  相似文献   

2.
A new cerium conversion coating modified with the hydrolysis silane is designed for AZ31 magnesium alloy, which aims at assessing the surface characterizations and electrochemical behaviors between the cerium conversion coating with and without the silane modified. The effect of the silane addictive is studied by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The adhesion of the coatings is undertaken according to the American Society for Testing and Materials (ASTM) standard D3359‐08 cross tape test. The electrochemical behavior is evacuated by polarization experiment and electrochemical impedance spectroscopy (EIS) in NaCl electrolyte. The results show that the addition of bis‐[triethoxysilylpropyl] tetrasulfide (BTESPT) to loosen and porous cerium conversion coating leads to the formation of a more compact and homogenous film, higher resistance to water uptake and better adhesion to substrate. Electrochemical measurements show that, compared with the non‐modified cerium conversion coating, the coating modified with the silane exhibits better anticorrosion properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Cerium conversion coating is successfully deposited on magnesium alloy AZ31 for corrosion protection. Deposition time on the influence of cerium conversion coating morphology, composition, and electrochemical properties has been investigated in detail. Morphological observation reveals that the cerium conversion coating is a porous agglomerate nanostructure. XPS indicates that the coating exhibits a time‐dependent ingredient. Moreover, the coating is considered as a combination of magnesium oxide/hydroxide and cerium (III) and (IV) oxides/hydroxides. The results of electrochemical impedance spectroscopy indicate that the anticorrosion coating exhibits the best properties during deposition of 5 min. In view of the analysis, the anticorrosion mechanism is pioneered proposed because of the formation of H‐bonding layer, which forms a reasonable barrier to Cl? ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Chromate conversion coatings (CCCs) on AA7075‐T6 were characterized using scanning electron microscopy, focused ion beam sectioning and scanning transmission electron microscopy with nano‐electron dispersive spectroscopy line profiling. The thickness and composition of the CCC was different at different locations on the heterogeneous microstructure of AA7075‐T6. The coating formed on the matrix phase was much thicker than that formed on the coarse Al–Cu–Mg, Al–Fe–Cu and Mg–Si intermetallic particles. Nano‐electron dispersive spectroscopy line profiling indicated that the coating on the Al–Fe–Cu particles was similar to the CCC formed on the phase matrix, primarily a chromium oxide. However, the coatings on the Al–Cu–Mg and Mg–Si particles were mixed Al/Mg/Cr oxide and Mg oxide, respectively. The growth of CCC followed a linear‐logarithmic kinetic rate law. The observations of this study support the sol‐gel model of CCC formation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
镁合金化学转化膜的制备及其性能研究   总被引:1,自引:0,他引:1  
在磷酸钠-磷酸二氢铵-高锰酸钾体系中对镁合金进行化学转化处理.研究了磷酸钠、磷酸二氢铵、高锰酸钾、温度、时间和添加剂对转化膜性能的影响.通过对转化膜结构、成分及性能的测试评价,得到了性能较好的化学转化溶液配方:Na3PO4为5g·L-1,NH4H2PO4为15 g· L-1,KMnO4为1g· L-1,添加剂(NH4)6 Mo7O24为0.5g·L-1.由SEM可观察到转化膜的表面成“干枯河床”状.XRD和EDS检测表明,膜层的主要成分是Mg,Al12 Mg17和无定形相,膜层表面主要有Mn,Mg,K,O和Al等元素组成.腐蚀实验和电化学测试表明,添加剂能够降低转化膜的腐蚀率,转化膜较基体的腐蚀电位正移了0.73 V,提高了镁合金的耐蚀性.  相似文献   

6.
钇对Mg-5Zn-2Al合金组织和力学性能的影响   总被引:1,自引:0,他引:1  
利用金相显微镜、电子万能试验机、扫描电镜和X射线等手段,研究了不同含量的Y对Mg-5Zn-2Al镁合金铸态及热处理状态下组织及力学性能的影响.结果表明:合金主要由α-Mg基体相、Mg32(Al,Zn)49相及Al3Y相组成,并且A13Y稀土相随着合金中加Y量的增加而增多.在铸态及热处理条件下,合金的力学性能(抗拉强度和延伸率)均呈现先下降后上升的变化趋势.在铸态条件下,当加Y量为0.3%时合金的抗拉强度达到最大,为205 MPao当加Y量为0.9%时,合金的延伸率达到最大,为14.6%.经过T6热处理后,合金的抗拉强度较铸态均得到了明显提高,而延伸率有所下降.加Y量为0.9%的Mg-5Zn-2Al镁合金的抗拉强度和延伸率均达到最大值,分别为234 MPa和11.4%.  相似文献   

7.
To improve the corrosion protection properties of zinc-rich silicate coatings on steel, zirconium pretreatment loaded with (3-aminopropyl)triethoxysilane (APTES) 0.025 % (v/v) and the partial replacement of spherical zinc by flake ZnAl alloy were investigated. DC polarization and electrochemical impedance spectroscopy (EIS) show that the zirconium pre-treated layer containing APTES improves the corrosion protection of the bare steel. Zinc-rich silicate coatings containing flake ZnAl with and without pretreatment were evaluated by EIS, salt spray test and pull-off test. Pretreatment with a zirconium conversion layer reduces corrosion products and adhesion loss (from 16.53% to 12.54%) while the performance of corrosion protection significantly increased from 2003 Ω.cm2 to 2640 Ω.cm2 in comparison with the non-pretreated samples. The results show that flake ZnAl pigment (5 wt%) significantly improves corrosion resistance and prolongs the duration of cathodic protection of zinc-rich silicate coatings.  相似文献   

8.
9.
In this work, a calcium silicate and calcium phosphate (CaSiO3/CaHPO4 · 2H2O) composite coating was applied by a chemical reaction to an extruded Mg‐Zn‐Ca magnesium alloy. SEM observation showed that a flat and sand‐like conversion coating was formed. X‐ray diffractometer (XRD) analysis indicated that the conversion coating was composed of CaHPO4 · 2H2O and a little amount of CaSiO3. The formation mechanism of CaSiO3/CaHPO4 · 2H2O composite conversion coatings was discussed. The electrochemical polarization tests showed that the conversion coating markedly improved the biocorrosion resistance of Mg‐Zn‐Ca alloy in Hank's solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The conversion coating with golden color and improved corrosion resistance had been prepared by adding Mn2+ in the Ti/Zr conversion coating solution. Comparing with that of conversion coating without Mn2+, the optimal treatment time of this conversion coating was much shorter and the corrosion resistance was obviously improved. The effect of Mn2+ on the formation of golden Ti/Zr conversion coating was thoroughly investigated by means of energy dispersive X‐ray spectroscopy, SEM, XPS, and Raman and electrochemical workstation. The results showed that the conversion coating had a double‐layer structure: the outer layer consisted of the metal‐organic complex and the inner layer was mainly made up of Na3AlF6. Mn2+ was oxidized into MnOOH in solution and precipitated on the substrate surface which provided the nucleus to Na3AlF6 crystal and accelerated Na3AlF6 crystal formation and also made the microstructure of conversion coating change to the cubic. The mechanism of the formation of the conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal, and formation of metal‐organic complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The preparation and performance improvement of the spinel coating on the surface of ferritic alloy is of wide interest for its application in the metallic interconnects of the solid oxide fuel cells (SOFCs). The Co Mn2O3 composite coating is prepared on the surface of the Crofer alloy by the composite electrodeposition method. A step-heating thermal conversion process is subsequently used to convert the composite coating into a spinel coating, while a direct-heating process is implemented as the control experiment. Isothermal oxidation tests are then carried out for the prepared samples in order to present the high temperature performance. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and area-specific resistance (ASR) are used to analyze the properties of the matrix and coatings. The experimental results reveal that the coatings by step-heating thermal conversion exhibit better performance of electrical conductivity and oxidation resistance than the coatings by direct-heating process. Furthermore, with the increase of oxidation time, the atomic proportion of Cr element diffusing to the surface of the matrix is maintained at about 3%–4% for the samples with spinel coatings by step heating, which effectively prevent the Cr volatilization in the matrix. The preparation of spinel coatings on the ferritic alloy by composite electrodeposition and step-heating thermal conversion is helpful to stimulate new ideas for the development of reliable and cost-effective metallic interconnect.  相似文献   

13.
镁合金铈转化膜的形成及表征   总被引:3,自引:1,他引:3  
采用X射线光电子能谱(XPS)、原子力显微镜(AFM)、电化学方法等对AZ31镁合金铈转化膜的组成、形貌结构及耐蚀性能进行了表征,并结合成膜动力学研究探讨了膜的形成机制。结果表明,镁合金铈转化膜的主要成分为铈的氧化物/氢氧化物,铈在膜中以三价和四价两种价态存在。膜可以分为两层,内、外层膜由不同的微结构组成,这种微结构的差异使内、外层膜之间结合力较弱,成为限制膜耐蚀性能提高的根本原因之一。成膜过程中,成膜溶液pH值升高,使Ce3+发生水解反应沉积析出铈的氢氧化物/氧化物。铈转化膜的生长动力学遵循抛物线规律。  相似文献   

14.
In this paper, the behaviour of the industrial applied Ti/Zr conversion coating (CC) pretreatment on rolled automotive aluminium samples (AA5182) is analysed. Due to its nanometre lateral and depth resolution, Auger electron spectroscopy (AES) is used to analyse the CC distribution at surface cathodic intermetallic particles. As a result of its high surface sensitivity, the AES technique is very susceptible to differences in the top contamination layer thickness. It is demonstrated that AES point measurements performed on aluminium model samples coated with 1.5 and 3 nm of Ti (oxide) layer cannot differentiate the two-layer thicknesses if a difference in the top contamination thickness is not taken into account. A data analysis methodology is introduced, based on the ratio of normalized peak areas (enrichment ratios), to eliminate the effect of the contamination layer thickness. The experimental validation of the methodology is performed on the model samples, demonstrating errors of 2% on the enrichment ratios on similar samples with different contamination layer thicknesses, while the conventional spectra quantification results in errors of 49%. The methodology is also theoretically substantiated within certain constraints. By the use of the AES methodology, an enriched Ti and Zr deposition is confirmed at the cathodic intermetallic particles at the surface of the industrial no-rinse CC sprayed automotive aluminium sheet samples.  相似文献   

15.
An AlPO-5 molecular sieve has been isomorphously substituted by one (Co or Si) or two (Co and Si) elements and studied in the catalytic conversion of methanol to hydrocarbons. The effect of different modifications on both acidity and catalytic behavior of this material was established and further discussed.  相似文献   

16.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The deposition of Ce‐based conversion coatings onto 2024‐T3 Al alloy sheet was studied using Rutherford backscattering spectroscopy, scanning electron microscopy, Auger electron spectroscopy, x‐ray photoelectron spectroscopy and atomic force microscopy. The Al sheet was pretreated with an alkaline clean followed by treatment in a Ce(IV) and H2SO4‐based desmutter. The Ce(IV)‐based conversion coating solution contained 0.1 M CeCl3·7H2O and 3% H2O2 and was acidified to pH 1.9 with HCl. Upon immersion, there was an induction period that included activation followed by aluminium oxide growth over the matrix and cerium oxide deposition onto cathodic intermetallic particles and along rolling marks on the surface. After the induction period cerium oxide deposited generally across the whole surface and thickened. The strongest anodic sites initially were adjacent to the intermetallic cathodes and resulted in aluminium dissolution but also oxide thickening. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Al5Fe2合金熔体中程有序结构的研究   总被引:5,自引:0,他引:5  
丛红日  边秀房  李辉 《化学学报》2002,60(2):287-292
采用紧束缚原子间作用势,利用分子动力学模拟(MD)的方法研究了Al5Fe2合金熔体的微观结构,发现在结构因子的小角部分(Q=15.7nm^-^1)出现了一个明显的预峰(FSDP),并得到X射线衍射实验的进一步印证,在实验测得的合金衍射图样中,液态衍射曲线与固态衍射曲线间存在着很好的对应关系,它们在小角部分都存在峰位,这表明Al5Fe2合金熔体与其固态在结构上存在着很大的相似性。通过对化学短程序参数α及Bhatis-Thornton(BT)结构因子的分析计算,发现熔体中存在较强的化学序,并认为正是这种化学序导致了中程有序结构(MRO)的产生。Faber-Ziman(FZ)偏结构因子的SFe-Fe(Q)和SAl-Fe(Q)在Q=15.7nm^-^1处分别存在最大值与最小值,也是熔体中存在着超结构的表征。同时,我们还给出了体系的配位数及代表中程有序的原子团簇的结构模型。  相似文献   

19.
采用沉积沉淀和浸渍法制备了Au-Zn组合改性HZSM-5催化剂.并且对比研究了HZSM-5,Au/HZSM-5,Zn/HZSM-5和Au-Zn/HZSM-5催化剂的性质和催化性能.采用UV-Vis和XPS表征揭示出Au-Zn/HZSM-5催化剂中Au物种与Zn物种的相互作用.正丁烷探针反应结果表明,在Zn/HZSM-5催化剂中引入Au有效地提高了正丁烷的脱氢芳构化性能,同时抑制了正丁烷在Zn活性中心上的氢解副反应.在相同条件下,与Zn/HZSM-5催化剂相比,正丁烷转化率由49.1%增加到70.8%,烯烃和芳烃产物总选择性由57%增加到61.98%,干气的选择性由31%降低至28.4%.上述结果表明,Au-Zn/HZSM-5催化剂在轻烃芳构化反应中具有良好的催化性能.  相似文献   

20.
Phosphate chemical conversion (PCC) technology has attracted extensive attention for its ability to regulate the surface properties of biomedical metals. However, titanium (Ti)-based alloys exhibit inertia because of the native passive layer, whereas zinc (Zn)-based alloys show high activity in acidic PCC solutions. The substrate performance affects the chemical reaction in the phosphating solution, which further leads to diversity in coating properties. In this work, the zinc-phosphate (ZnP) coatings are prepared on Ti alloy (TA) and Zn alloy (ZA) substrates using the PCC method, respectively. The coatings prepared herein are detected by a scanning electron microscope (SEM), X-ray diffractometer (XRD), laser scanning confocal microscope (LSCM), universal testing machine, contact angle goniometer, and electrochemical workstation system. The results show that the substrate performance has little effect on the phase composition but can significantly affect the crystal microstructure, thickness, and bonding strength of the coatings. In addition, the ZnP coatings improve the surface roughness of the substrates and show good hydrophilicity and electrochemical corrosion resistance. The formation mechanism of the ZnP coating is revealed using potential-time curves, indicating that the metal–solution interfacial reaction plays a dominant role in the deposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号