首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6–311 + G(2d,2p) method and basis set. B3PW91/6–311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation.  相似文献   

2.
Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, electron momentum spectra, etc, and can be interpreted as states of the leaving electron. Formally, Dyson orbitals represent the overlap between an initial N-electron wave function and the N-1 electron wave function of the corresponding ionized system. For the ground state ionization, Dyson orbitals are often similar to the corresponding Hartree-Fock molecular orbitals (MOs); however, for ionization from electronically excited states Dyson orbitals include contributions from several MOs and their shapes are more complex. The theory is applied to calculating the Dyson orbitals for ionization of formaldehyde from the ground and electronically excited states. Partial-wave analysis is employed to compute the probabilities to find the ejected electron in different angular momentum states using the freestanding and Coulomb wave representations of the ionized electron. Rydberg states are shown to yield higher angular momentum electrons, as compared to valence states of the same symmetry. Likewise, faster photoelectrons are most likely to have higher angular momentum.  相似文献   

3.
The influence of solvent polarity on the electronic transition of four different N-hexadecyl styrylpyridinium dyes has been investigated in 15 solvents. The E(T)(30) scale has been used to propose a quantitative approach towards the relative stability of the electronic ground and excited state species. The extents of contribution of dipolar aprotic solvents towards the solvation of the excited species have been determined to be 42-48% for some of the dyes. Instead of a steady solvatochromism, all the dyes suffer a reversal in solvatochromism. The transitions of the solvatochromism, referred to as solvatochromic switches, are found to be at E(T)(30) values of approximately 50 for methyl and N,N-dimethylamino substituted dyes while at 37.6 for hydroxyl substituted dye and approximately 45 for 4-(1-methyl-2-phenylethenyl) pyridinium dye. A reversal in the trend of solvent effect in the later dye corresponding to 4-(4-methyl styryl)pyridinium dye has been attributed to an analogy of series and parallel electron flow.  相似文献   

4.
Two-dimensional maps of the spatial distributions of excited and ionized sputtered copper atoms are presented for a millisecond pulsed argon glow discharge. These maps demonstrate the temporal as well as spatial dependence of different excitation and ionization processes over the pulse cycle. Transitions from the low energy electronic states for the atom, characterized by emission such as that at 324.75 nm (3.82→0.00 eV), dominate the plateau time regime at a distance of 2.5 mm from the cathode surface. These processes originate from the electron excitation of ground state copper atoms. Transitions from high-energy electronic states, such as that characterized by emission at 368.74 nm (7.16→3.82 eV), predominate during the afterpeak time regime at a distance of 5.0–6.0 mm from the cathode surface. This observation is consistent with the relaxation of highly excited copper atoms produced by electron recombination with copper ions during the afterpeak time regime. Analyses of afterpeak and plateau intensities for a series of copper emission lines indicate an electron excitation temperature equivalent to 5.78 eV at 0.8 torr and 1.5 W. Temporal profiles exhibit copper ion emission only during the plateau time regime.  相似文献   

5.
The interaction with amino acids of the excited states of the N-oxide resazurin and its deoxygenation product resorufin, has been studied in aqueous solution at pH 7.5. Steady-state and time-resolved studies show that the fluorescence is quenched by amino acids. Complexation of the dyes in the ground state with aromatic amino acids was also observed. The singlet quenching is attributed to electron transfer from the amino acids to the excited dye based on the dependence of the bimolecular rate constants with the ionization potential of quenchers. Flash photolysis experiments allowed determination of the quenching rate constants for the triplet deactivation of dyes by several amino acids, as well as the characterization of the transients formed in the process. These data show that the triplet is also deactivated by an electron transfer process. However, the deactivation of the N-oxide dye by tryptophan can be described by a hydrogen atom transfer. The protolytic dissociation constants of the dye radical ions are reported. The irradiation of rezasurin in the presence of amino acids leads to deoxygenation of the dye to give resorufin. This process involves the triplet excited state of resazurin and is efficient only in the presence of amino acids containing the -SH group.  相似文献   

6.
A method for the measurement of rate constants for inelastic collisions between thermal electrons and excited atoms is presented. The measurements were performed in a mixture of saturated caesium and sodium vapor. Electrons were generated by ionization of caesium vapour by intense resonant dye laser pulses. Pulses of second dye laser, delayed with respect to the first one, excited the sodium atoms to the 3P level. Subsequently Na(3P) atoms were excited to higher levels by collisions with electrons. The fluorescence intensity from these levels served as a measure of the rate constant for these transitions. The method was used to investigate the electron impact induced 3P–4P excitation.  相似文献   

7.
It is shown that the antiaromatic character of certain conjugated cyclic hydrocarbons is due to the presence of an even number of distinct electron pairs in the system (such as, but not necessarily π electrons). In these systems, the ground state is constructed from an out‐of‐phase combination of two valence bond (VB) structures, and its equilibrium geometry is necessarily distorted along the coordinate that interchanges these structures. If a new symmetry element appears during the transition between the two structures, the ground electronic state at the symmetric point transforms as one of the nontotally symmetric irreducible representations of the point group. The conjugate excited state, formed from the in‐phase combination of the same two structures, transforms as the totally symmetric representation of the group and is strongly bound. Its structure is similar to that of the ground state at the symmetric point, and the energy separation between the two states is small compared to that of conjugated cyclic hydrocarbons having an odd number of distinct electron pairs. Motion along the “Kekulé‐type” vibrational mode on the excited‐state potential surface is very similar to motion along the reaction coordinate connecting the two distorted structures on the ground‐state surface. It is characterized by a significantly higher vibrational frequency compared to frequencies of similar modes in ground‐state molecules. These qualitative predictions are supported by quantum chemical calculations on cyclobutadiene, cyclooctatetraene, and pentalene. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 133–145, 1999  相似文献   

8.
A theoretical model for electron excitation and ionization of atoms following inner-shell ionization is presented. Both the sudden creation of an inner-shell vacancy and the Coulomb interaction between the ionized electron and atomic electrons are taken into account. The transition amplitude is written as the sum of the conventional shake process and the multipole transition due to the Coulomb interaction between electrons. The valence-shell excitation and ionization probabilities accompanying K-shell photoionization of Ne are calculated. It is found that the interference between the shake process and the Coulomb interaction enhances the probabilities at low energies.  相似文献   

9.
Unsymmetrical tri- and pentamethinecyanine dyes with a thiazolo[3,4-b][1,2,4]triazine ring were synthesized. The electron-density distribution on the atoms of the dyes in the ground, first, and second excited states was calculated by a quantum-chemical method. It was established that the first two electron transitions are localized on the same atoms of the dyes and that charge transfer to the triazine fragment of the molecule is realized upon excitation. The degree of participation of the heterocyclic ring in the first electron transition, which is responsible for the color of the dye, decreases with an increase in the length of the polymethine chain.See [1] for Communication 14.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 985–991, July, 1988.  相似文献   

10.
《中国化学会会志》2018,65(4):405-415
Cyclic peptides, because of their unique spatial conformations, simplicity, and limited conformational freedom, are widely used as model molecules for larger peptides in chemistry and biochemistry. In this work, the ionization energies and photoelectron spectra of different conformers of the cyclic peptides (n = 2–15) were calculated using the symmetry‐adapted cluster‐configuration interaction (SAC‐CI) method and D95 + (d,p) basis set in the gas phase. The calculated photoelectron spectra were used to study the electronic structures of the cyclic peptides. It was observed that the first ionization energy of the cyclic peptides decreases with the ring size, reaches a minimum, and then increases. In addition, the first ionization band of the cyclic peptides was assigned to the ionization of the lone electron pairs of the nitrogen atoms, although there are π electrons of the CO bond and the lone electron pairs of oxygen atoms in the structure of the peptides.  相似文献   

11.
Photofragment spectroscopy of ICI molecules photodissociated at 237 nm is studied by 2 + 1 resonance-enhanced multi-photon ionization and time of flight techniques. Doppler profiles of the chlorine atom fragments in two spin—orbit states show that chlorine atoms in the ground state, 2P3/2, are produced from a perpendicular dissociative transition, and chlorine atoms in the excited state, 2P , arise from a parallel transition. The possible electronically excited states leading to dissociation in both the perpendicular and parallel cases are considered.  相似文献   

12.
A method for calculating the vertical ionization potentials and electron affinities according to their fundamental definition as differences between energies of the singlet ground and doublet ionized states is developed for cyclic hydrocarbons. The method adopts a new approach based on the central idea of a recent ab initio IP and EA calculation in which orbital exponents are optimized for both ground and ionized states. Hence, all the semi-empirical parameters of the MO theory are written as functions of the effective nuclear charge which, in turn, is made self-consistent with the molecular electronic charge distribution of the species. Although the MO theory is developed in the π electron approximation, the changes in the σ electron density, resulting from the loss or gain of a π electron, are explicitly considered in the calculation. The theory is compared to the earlier work of Hoyland and Goodman and tested against the first five polyacenes and on the condensed ring aromatics phenanthrene, pyrene, and perylene. Except for perylene, the results are in close agreement with the latest photoelectron spectroscopic measurements.  相似文献   

13.
CARS spectra of the ground and an excited electronic state of rhodamine dyes are observed under two different resonance conditions using nanosecond dye lasers The observed differences are not due to structural changes.  相似文献   

14.
The UV fluorescence excitation and dispersed fluorescence spectra of a jet-cooled o-methylaniline have been obtained for the S1 <-- S0 transition, in which some of the bands have been observed and assigned for the first time. The origin of the electronic transition appears at 34,328.4 cm(-1). It was found that the spectra exhibit an important feature corresponding to the internal rotation of the methyl group in the electronic ground and excited states. Ab initio calculations at MP2/6-31 + G* and CIS/6-31 + G* show that the optimised structure of o-methylaniline in the ground state is not planar with the amino group having sp3 hybridation-like character due to the existence of lone paired electrons on the N atom. Upon electronic excitation, the C-N bond exhibits a partial double character, as in the case of other aniline derivatives.  相似文献   

15.
Four D ‐π‐A dyes (D=donor, A=accpetor) based on a 3,4‐thienothiophene π‐bridge were synthesized for use in dye‐sensitized solar cells (DSCs). The proaromatic building block 3,4‐thienothiophene is incorporated to stabilize dye excited‐state oxidation potentials. This lowering of the excited‐state energy levels allows for deeper absorption into the NIR region with relatively low molecular weight dyes. The influence of proaromatic functionality is probed through a computational analysis of optimized bond lengths and nucleus independent chemical shifts (NICS) for both the ground‐ and excited‐ states. To avoid a necessary lowering of the TiO2 semiconductor conduction band (CB) to promote efficient dye–TiO2 electron injection, strong donor functionalities based on triaryl‐ and diarylamines are employed in the dye designs to raise both the ground‐ and excited‐state oxidation potentials of the dyes. Solubility, aggregation, and TiO2 surface protection are addressed by examining an ethylhexyl alkyl chain in comparison to a simple ethyl chain on the 3,4‐thienothiophene bridge. Power conversion efficiencies of up to 7.8 % are observed.  相似文献   

16.
Indacenodithiophene (IDT)-based high-efficiency photovoltaics have received increasing attention recently. This paper reports a density functional theory investigation of the electronic and optical properties of three IDT-based organic dyes together with the dye/(TiO2)46 interface. In order to enhance the photoelectric properties of IDT dyes, this paper considers two methods for the structure modification of the experimentally reported dye DPInDT (J. Org. Chem. 2011, 76, 8977): the extension of the conjugation length by dithienothiophene as well as the heteroatom substitution of the bridging atoms by electron-rich nitrogen atoms. Our calculations show that both methods obviously affect the distributions of the molecular orbitals and notably red shift the absorption peaks of around 20 nm, with the former method demonstrating enhanced light harvesting efficiency. The structure modifications proposed also enhance the emission spectrum properties for IDT-based organic dyes. The calculated ultrafast injection time of electrons from the excited state of IDT dyes to the (TiO2)46 belongs to the femtosecond order of magnitude, and is ideal for efficient photoelectric conversion process in dye-sensitized solar cells (DSSCs) applications. The IDT dyes designed in this paper have good electronic and spectroscopic properties. This study is expected to provide useful guidance for the development of novel IDT dyes for applications in DSSCs.  相似文献   

17.
The potential energy curves of the low-lying electronic states of yttrium carbide (YC) and its cation are calculated at the complete active space self-consistent field and the multireference single and double excitation configuration interaction (MRSDCI) levels of theory. Fifteen low-lying electronic states of YC with different spin and spatial symmetries were identified. The X (4)Sigma- state prevails as the ground state of YC, and a low-lying excited A (4)Pi state is found to be 1661 cm(-1) higher at the MRSDCI level. The computations of the authors support the assignment of the observed spectra to a B (4)Delta(Omega=72)<--A (4)Pi(Omega=52) transition with a reinterpretation that the A (4)Pi state is appreciably populated under the experimental conditions as it is less than 2000 cm(-1) of the X (4)Sigma- ground state, and the previously suggested (4)Pi ground state is reassigned to the first low-lying excited state of YC. The potential energy curves of YC+ confirm a previous prediction by Seivers et al. [J. Chem. Phys. 105, 6322 (1996)] that the ground state of YC+ is formed through a second pathway at higher energies. The calculated ionization energy of YC is 6.00 eV, while the adiabatic electron affinity is 0.95 eV at the MRSDCI level. The computed ionization energy of YC and dissociation energy of YC+ confirm the revised experimental estimates provided by Seivers et al. although direct experimental measurements yielded results with greater errors due to uncertainty in collisional cross sections for YC+ formation.  相似文献   

18.
A semiempirical molecular orbital (MO ) method is outlined that is designed for correlation and prediction of the spectra and other properties of complex molecules. Within the ZDO approximation, the reactive (π-bonding and nonbonding) electrons are treated explicitly considering the σ electrons as an unreactive static potential. The electronic repulsion integrals are evaluated using the multipole expansion formulas, which allow the characterization of each orbital by specification of its quadrupole moment, from which all two-center repulsion integrals involving it would be computed. A preliminary application of the all reactive electron self-consistent field (ARE -SCF -CI ) MO method is made to organic carbonyls as well as some selected cyanine dyes. The predicted n → π* and π → π* transition energies and intensities are in good agreement with experimental data. The calculated ionization potentials are 0.2–0.7 eV lower than the observed values. The present method, although it requires further possible refinements, bridges the gap between the simplicity of the PPP method and the required overall interpretation of the electronic properties.  相似文献   

19.
The electronic and vibrational spectra of 9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide (Nile Blue-5-N-methacrylamide) are measured, and the results are compared with the theoretical values obtained by quantum chemical calculations. The geometry, electronic transitions, charge distribution, and the IR normal modes of this new dye and of its precursor Nile Blue have been computed by using Density Functional Theory (DFT) method with the functional B3LYP and the 6-31G(d) Gaussian basis set. The molecular properties of the two dyes, predicted and observed, are very similar in the electronic ground state. In the excited state, however, the longer lifetime and larger fluorescence quantum yield of the Nile Blue-5-methacrylamide is ascribed to an inhibition of the twisted intramolecular charge transfer (TICT) process, when the NH2 is substituted by the methacrylamide in the 5-position of the aromatic extended ring of the dye. The change in charge density of the N atom in 5-position, as well as the difference in dipole moment and ionization potential of the two dyes molecules, explain the attenuation of TICT process. The vibration spectra of both dyes are simulated properly by using the DFT method.  相似文献   

20.
A series of metal‐free organic dyes with electron‐rich (D) and electron‐deficient units (A) as π linkers have been studied theoretically by means of density functional theory (DFT) and time‐dependent DFT calculations to explore the effects of π spacers on the optical and electronic properties of triphenylamine dyes. The results show that Dye 1 with a structure of D‐A‐A‐A is superior to the typical C218 dye in various key aspects, including the maximum absorption (λmax=511 nm), the charge‐transfer characteristics (Dq/t is 5.49 Å/0.818 e?/4.41 Å), the driving force for charge‐carrier injection (ΔGinject=1.35 eV)/dye regeneration (ΔGregen=0.27 eV), and the lifetime of the first excited state (τ=3.1 ns). It is thus proposed to be a promising candidate in dye‐sensitized solar cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号