首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we compare Krylov subspace methods with Chebyshev series expansion for approximating the matrix exponential operator on large, sparse, symmetric matrices. Experimental results upon negative‐definite matrices with very large size, arising from (2D and 3D) FE and FD spatial discretization of linear parabolic PDEs, demonstrate that the Chebyshev method can be an effective alternative to Krylov techniques, especially when memory bounds do not allow the storage of all Ritz vectors. We also discuss the sensitivity of Chebyshev convergence to extreme eigenvalue approximation, as well as the reliability of various a priori and a posteriori error estimates for both methods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
We derive a priori error bounds for the block Krylov subspace methods in terms of “the sine” between the desired invariant subspace and the block Krylov subspace. The obtained results can be seen as the block analogue of the classical a priori estimates for standard projection methods.  相似文献   

3.
In the present paper, we propose Krylov‐based methods for solving large‐scale differential Sylvester matrix equations having a low‐rank constant term. We present two new approaches for solving such differential matrix equations. The first approach is based on the integral expression of the exact solution and a Krylov method for the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project the initial problem onto a block (or extended block) Krylov subspace and get a low‐dimensional differential Sylvester matrix equation. The latter problem is then solved by some integration numerical methods such as the backward differentiation formula or Rosenbrock method, and the obtained solution is used to build the low‐rank approximate solution of the original problem. We give some new theoretical results such as a simple expression of the residual norm and upper bounds for the norm of the error. Some numerical experiments are given in order to compare the two approaches.  相似文献   

4.
The aim of this paper is to analyze efficient numerical methods for time integration of European option pricing models. When spatial discretization is adopted, the resulting problem consists of an ordinary differential equation that can be approximated by means of exponential Runge–Kutta integrators, where the matrix‐valued functions are computed by the so‐called shift‐and‐invert Krylov method. To our knowledge, the use of this numerical approach is innovative in the framework of option pricing, and it reveals to be very attractive and efficient to solve the problem at hand. In this respect, we propose some a posteriori estimates for the error in the shift‐and‐invert approximation of the core‐functions arising in exponential integrators. The effectiveness of these error bounds is tested on several examples of interest. They can be adopted as a convenient stopping criterion for implementing the exponential Runge–Kutta algorithm in order to perform time integration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In the present paper, we propose block Krylov subspace methods for solving the Sylvester matrix equation AXXB=C. We first consider the case when A is large and B is of small size. We use block Krylov subspace methods such as the block Arnoldi and the block Lanczos algorithms to compute approximations to the solution of the Sylvester matrix equation. When both matrices are large and the right-hand side matrix is of small rank, we will show how to extract low-rank approximations. We give some theoretical results such as perturbation results and bounds of the norm of the error. Numerical experiments will also be given to show the effectiveness of these block methods.  相似文献   

6.
We consider the task of computing solutions of linear systems that only differ by a shift with the identity matrix as well as linear systems with several different right-hand sides. In the past, Krylov subspace methods have been developed which exploit either the need for solutions to multiple right-hand sides (e.g. deflation type methods and block methods) or multiple shifts (e.g. shifted CG) with some success. In this paper we present a block Krylov subspace method which, based on a block Lanczos process, exploits both features—shifts and multiple right-hand sides—at once. Such situations arise, for example, in lattice quantum chromodynamics (QCD) simulations within the Rational Hybrid Monte Carlo (RHMC) algorithm. We present numerical evidence that our method is superior compared to applying other iterative methods to each of the systems individually as well as, in typical situations, to shifted or block Krylov subspace methods.  相似文献   

7.
In this paper we compare Krylov subspace methods with Faber series expansion for approximating the matrix exponential operator on large, sparse, non‐symmetric matrices. We consider in particular the case of Chebyshev series, corresponding to an initial estimate of the spectrum of the matrix by a suitable ellipse. Experimental results upon matrices with large size, arising from space discretization of 2D advection–diffusion problems, demonstrate that the Chebyshev method can be an effective alternative to Krylov techniques. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user‐defined region in the complex plane. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solving for multiple eigenpairs simultaneously. The traditional FEAST algorithm is implemented by directly solving collections of shifted linear systems of equations; in this paper, we describe a variation of the FEAST algorithm that uses iterative Krylov subspace algorithms for solving the shifted linear systems inexactly. We show that this iterative FEAST algorithm (which we call IFEAST) is mathematically equivalent to a block Krylov subspace method for solving eigenvalue problems. By using Krylov subspaces indirectly through solving shifted linear systems, rather than directly using them in projecting the eigenvalue problem, it becomes possible to use IFEAST to solve eigenvalue problems using very large dimension Krylov subspaces without ever having to store a basis for those subspaces. IFEAST thus combines the flexibility and power of Krylov methods, requiring only matrix–vector multiplication for solving eigenvalue problems, with the natural parallelism of the traditional FEAST algorithm. We discuss the relationship between IFEAST and more traditional Krylov methods and provide numerical examples illustrating its behavior.  相似文献   

9.
The task of extracting from a Krylov decomposition the approximation to an eigenpair that yields the smallest backward error can be phrased as finding the smallest perturbation which makes an associated matrix pair uncontrollable. Exploiting this relationship, we propose a new deflation criterion, which potentially admits earlier deflations than standard deflation criteria. Along these lines, a new deflation procedure for shift-and-invert Krylov methods is developed. Numerical experiments demonstrate the merits and limitations of this approach. This author has been supported by a DFG Emmy Noether fellowship and in part by the Swedish Foundation for Strategic Research under the Frame Programme Grant A3 02:128.  相似文献   

10.
The block‐Lanczos method serves to compute a moderate number of eigenvalues and the corresponding invariant subspace of a symmetric matrix. In this paper, the convergence behavior of nonrestarted and restarted versions of the block‐Lanczos method is analyzed. For the nonrestarted version, we improve an estimate by Saad by means of a change of the auxiliary vector so that the new estimate is much more accurate in the case of clustered or multiple eigenvalues. For the restarted version, an estimate by Knyazev is generalized by extending our previous results on block steepest descent iterations and single‐vector restarted Krylov subspace iterations. The new estimates can also be reformulated and applied to invert‐block‐Lanczos methods for solving generalized matrix eigenvalue problems.  相似文献   

11.
In the present paper, we present numerical methods for the computation of approximate solutions to large continuous-time and discrete-time algebraic Riccati equations. The proposed methods are projection methods onto block Krylov subspaces. We use the block Arnoldi process to construct an orthonormal basis of the corresponding block Krylov subspace and then extract low rank approximate solutions. We consider the sequential version of the block Arnoldi algorithm by incorporating a deflation technique which allows us to delete linearly and almost linearly dependent vectors in the block Krylov subspace sequences. We give some theoretical results and present numerical experiments for large problems.  相似文献   

12.
Block Krylov subspace methods (KSMs) comprise building blocks in many state‐of‐the‐art solvers for large‐scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov subspace methods provide a major reduction in iteration counts over polynomial block KSMs, they also require reliable solvers for the coefficient matrices, and these solvers are often iterative methods themselves. It is not hard to devise scenarios in which the available memory, and consequently the dimension of the Krylov subspace, is limited. In such scenarios for linear systems and eigenvalue problems, restarting is a well‐explored technique for mitigating memory constraints. In this work, such restarting techniques are applied to polynomial KSMs for matrix equations with a compression step to control the growing rank of the residual. An error analysis is also performed, leading to heuristics for dynamically adjusting the basis size in each restart cycle. A panel of numerical experiments demonstrates the effectiveness of the new method with respect to extended block KSMs.  相似文献   

13.
We present a general framework for a number of techniques based on projection methods on ‘augmented Krylov subspaces’. These methods include the deflated GMRES algorithm, an inner–outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a significant improvement in convergence rate when compared with their standard counterparts using the subspaces of the same dimension. The methods can all be implemented with a variant of the FGMRES algorithm. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.  相似文献   

15.
In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.  相似文献   

16.
A deflated restarting Krylov subspace method for approximating a function of a matrix times a vector is proposed. In contrast to other Krylov subspace methods, the performance of the method in this paper is better. We further show that the deflating algorithm inherits the superlinear convergence property of its unrestarted counterpart for the entire function and present the results of numerical experiments.  相似文献   

17.
刘瑶宁 《计算数学》2022,44(2):187-205
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度.  相似文献   

18.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

19.
We discuss a class of deflated block Krylov subspace methods for solving large scale matrix eigenvalue problems. The efficiency of an Arnoldi-type method is examined in computing partial or closely clustered eigenvalues of large matrices. As an improvement, we also propose a refined variant of the Arnoldi-type method. Comparisons show that the refined variant can further improve the Arnoldi-type method and both methods exhibit very regular convergence behavior.  相似文献   

20.
Most current prevalent iterative methods can be classified into the socalled extended Krylov subspace methods, a class of iterative methods which do not fall into this category are also proposed in this paper. Comparing with traditional Krylov subspace methods which always depend on the matrix-vector multiplication with a fixed matrix, the newly introduced methods (the so-called (progressively) accumulated projection methods, or AP (PAP) for short) use a projection matrix which varies in every iteration to form a subspace from which an approximate solution is sought. More importantly, an accelerative approach (called APAP) is introduced to improve the convergence of PAP method. Numerical experiments demonstrate some surprisingly improved convergence behaviors. Comparisons between benchmark extended Krylov subspace methods (Block Jacobi and GMRES) are made and one can also see remarkable advantage of APAP in some examples. APAP is also used to solve systems with extremely ill-conditioned coefficient matrix (the Hilbert matrix) and numerical experiments shows that it can bring very satisfactory results even when the size of system is up to a few thousands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号