首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ?. It will be proved that for φ, ψ∈? we have $$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$ and that $$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$ wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ?. A quantitative version of the RAGE theorem shall also be given.  相似文献   

2.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

3.
For a one-dimensional Ising model with interaction energy $$E\left\{ \mu \right\} = - \sum\limits_{1 \leqslant i< j \leqslant N} {J(j - i)} \mu _\iota \mu _j \left[ {J(k) \geqslant 0,\mu _\iota = \pm 1} \right]$$ it is proved that there is no long-range order at any temperature when $$S_N = \sum\limits_{k = 1}^N {kJ\left( k \right) = o} \left( {[\log N]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)$$ The same result is shown to hold for the corresponding plane rotator model when $$S_N = o\left( {\left[ {{{\log N} \mathord{\left/ {\vphantom {{\log N} {\log \log N}}} \right. \kern-\nulldelimiterspace} {\log \log N}}} \right]} \right)$$   相似文献   

4.
In a bubble chamber experiment about 2×106 Σ ±-decays have been measured to separateΣ ±→ne±¯ν events from the two-body modes. NoΣ + →ne + ν event was found whereas 607Σ ?→ne?¯ν decays could be identified. The data yield for the ΔQ=?ΔS decay an upper limit: $$\frac{{\Gamma \left( {\sum {^ + } \to ne^ + v} \right)}}{{\Gamma \left( {\sum {^ - } \to ne^ - v} \right)}}< 1.9 x 10^{ - 2} (90\% confidence level)$$ and the branching ratio: $$\frac{{\Gamma \left( {\sum {^ - } \to ne^ - v} \right)}}{{\Gamma \left( {\sum {^ - } \to n\pi ^ - } \right)}} = (1.09 \pm 0.06) x 10^{ - 3} .$$   相似文献   

5.
The identity $$\sum\limits_{v = 0} {\left( {\begin{array}{*{20}c} {n + 1} \\ v \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} {n - v} \\ v \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {n - v} \\ {v - 1} \\ \end{array} } \right)} \right] = ( - 1)^n } $$ is proved and, by means of it, the coefficients of the decomposition ofD 1 n into irreducible representations are found. It holds: ifD 1 n \(\mathop {\sum ^n }\limits_{m = 0} A_{nm} D_m \) , then $$A_{nm} = \mathop \sum \limits_{\lambda = 0} \left( {\begin{array}{*{20}c} n \\ \lambda \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda - 1} \\ \end{array} } \right)} \right].$$   相似文献   

6.
We investigate a continuous Ising system on a lattice, equivalently an anharmonic crystal, with interactions: $$\sum\limits_{\left\langle {x,y} \right\rangle } {\left( {\phi _x - \phi _y } \right)} ^2 + \lambda \left( {\phi _x - \phi _y } \right)^4 , \phi _x \in \mathbb{R}, x \in \mathbb{Z}^d .$$ We prove that the perturbation expansion for the free energy and for the correlation functions is asymptotic about λ=0, despite the fact that the reference system (λ=0) does not cluster exponentially. The results can be extended to more general systems of this type, e.g. an even polynomial semibounded from below instead of a quartic interaction. By a suitable scaling, λ corresponds to the temperature.  相似文献   

7.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

8.
WE consider a one-dimensional random Ising model with Hamiltonian $$H = \sum\limits_{i\ddag j} {\frac{{J_{ij} }}{{\left| {i - j} \right|^{1 + \varepsilon } }}S_i S_j } + h\sum\limits_i {S_i } $$ , where ε>0 andJ ij are independent, identically distributed random variables with distributiondF(x) such that i) $$\int {xdF\left( x \right) = 0} $$ , ii) $$\int {e^{tx} dF\left( x \right)< \infty \forall t \in \mathbb{R}} $$ . We construct a cluster expansion for the free energy and the Gibbs expectations of local observables. This expansion is convergent almost surely at every temperature. In this way we obtain that the free energy and the Gibbs expectations of local observables areC functions of the temperature and of the magnetic fieldh. Moreover we can estimate the decay of truncated correlation functions. In particular for every ε′>0 there exists a random variablec(ω)m, finite almost everywhere, such that $$\left| {\left\langle {s_0 s_j } \right\rangle _H - \left\langle {s_0 } \right\rangle _H \left\langle {s_j } \right\rangle _H } \right| \leqq \frac{{c\left( \omega \right)}}{{\left| j \right|^{1 + \varepsilon - \varepsilon '} }}$$ , where 〈 〉 H denotes the Gibbs average with respect to the HamiltonianH.  相似文献   

9.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

10.
We consider models, with an abelian continuous group of symmetry, of the type: $$H = \sum\limits_x {\left[ {\frac{1}{2}(\nabla _x \phi )^2 + \frac{\lambda }{4}(\nabla _x \phi )^4 } \right].}$$ We generalize Brascamp-Lieb inequalities to get (λ-independent) bounds on the low momentum behaviour of general correlation functions when these are truncated into two clusters. We then use this result to derive an asymptotic expansion (up the second order in λ) of the dielectric constant of this system.  相似文献   

11.
We study the final problem for the nonlinear Schrödinger equation
$i{\partial }_{t}u+\frac{1}{2}\Delta u=\lambda|u|^{\frac{2}{n}}u,\quad (t,x)\in {\mathbf{R}}\times \mathbf{R}^{n},$
where\(\lambda \in{\bf R},n=1,2,3\). If the final data\(u_{+}\in {\bf H}^{0,\alpha }=\left\{ \phi \in {\bf L}^{2}:\left( 1+\left\vert x\right\vert \right) ^{\alpha }\phi \in {\bf L}^{2}\right\} \) with\(\frac{ n}{2} < \alpha < \min \left( n,2,1+\frac{2}{n}\right) \) and the norm\(\Vert \widehat{u_{+}}\Vert _{{\bf L}^{\infty }}\) is sufficiently small, then we prove the existence of the wave operator in L 2. We also construct the modified scattering operator from H 0,α to H 0,δ with\(\frac{n}{2} < \delta < \alpha\).
  相似文献   

12.
We consider the λ(?6??4) quantum field theory in two space-time dimensions. Using the Bethe-Salpeter equation, we show that there is a unique two particle bound state if the coupling constant λ>0 is sufficiently small. Ifm is the mass of single particles then the bound state mass is given by $$_B (\lambda ) = 2m\left( {1 - \frac{9}{8}\left( {\frac{\lambda }{{m^2 }}} \right)} \right)^2 + \mathcal{O}\left( {\lambda ^3 } \right).$$   相似文献   

13.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

14.
For large classes of Schrödinger operators and Jacobi matrices we prove that ifh has only one point spectrum then for φ0 of compact support $$\mathop {\lim }\limits_{t \to \infty } t^{ - 2} \left\| {xe^{ - ith} \phi _0 } \right\|^2 = 0.$$   相似文献   

15.
In this note we study lattice Φ4-models with Hamiltonian $$H = \tfrac{1}{2}(\varphi , - \Delta \varphi ) + \lambda \Sigma \left( {\varphi _i^2 - \frac{{m^2 }}{{8\lambda }}} \right)^2$$ and Gaussian boundary conditions. Using the polymer expansion we obtain analyticity of the pressure and the correlation functions in the infinite volume limit in a region $$\left\{ {\left. \lambda \right| \left| \lambda \right|< \varepsilon ,\left| {arg } \right.\left. \lambda \right|< \frac{\pi }{2} - \delta } \right\}$$ for every δ>0.  相似文献   

16.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

17.
g-factors of rotational states in176Hf and180Hf were measured with the twelve detector IPAC-apparatus of our laboratory [1]. The natural radioactivity 3.78·1010y176Lu and the 5.5 h isomer180mHf were used which populate the ground-state rotational bands of176Hf and180Hf. The integral rotations ofγ-γ directional correlations in strong external magnetic fields and in static hyperfine fields of (Lu→Hf)Fe2 and HfFe2 were observed. The following results were obtained: $$\begin{array}{l} ^{176} Hf: g\left( {4_1^ + } \right) = + 0.334\left( {38} \right) \\ ^{180} Hf: g\left( {2_1^ + } \right) = + 0.305\left( {14} \right) \\ g\left( {4_1^ + } \right) = + 0.358\left( {43} \right) \\ {{ g\left( {6_1^ + } \right)} \mathord{\left/ {\vphantom {{ g\left( {6_1^ + } \right)} {g\left( {4_1^ + } \right)}}} \right. \kern-\nulldelimiterspace} {g\left( {4_1^ + } \right)}} = + 0.95\left( {12} \right) \\ \end{array}$$ . The hyperfine field in (Lu→Hf)Fe2 was calibrated by observing the integral rotation of the 9/2? first excited state of177Hf populated in the decay of 6.7d177Lu. Theg-factor of this state was redetermined in an external magnetic field as $$^{177} Hf: g\left( {{9 \mathord{\left/ {\vphantom {9 {2^ - }}} \right. \kern-\nulldelimiterspace} {2^ - }}} \right) = + 0.228\left( 7 \right)$$ . Finally theg-factor of the 2 1 + state of176Hf was derived from the measuredg(2 1 + ) of180Hf by use of the precisely known ratiog(2 1 + ,176Hf)/g(2 1 + ,180Hf) [2] as $$^{176} Hf: g\left( {2_1^ + } \right) = + 0.315\left( {30} \right)$$ .  相似文献   

18.
We prove that if the initial condition of the Swift–Hohenberg equation $$\partial _t u(x,t) = (\varepsilon ^2 - (1 + \partial _x^2 )^2 ){\text{ }}u(x,t) - u^3 (x,t)$$ is bounded in modulus by Ce ?βx as x→+∞, the solution cannot propagate to the right with a speed greater than $$\mathop {\sup }\limits_{0 < {\gamma } \leqslant \beta } {\gamma }^{ - 1} (\varepsilon ^2 + 4{\gamma }^2 + 8{\gamma }^4 ).$$ This settles a long-standing conjecture about the possible asymptotic propagation speed of the Swift–Hohenberg equation. The proof does not use the maximum principle and is simple enough to generalize easily to other equations. We illustrate this with an example of a modified Ginzburg–Landau equation, where the critical speed is not determined by the linearization alone.  相似文献   

19.
This paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform $$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$ Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail $$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$ In the regime of smallα, ifα¦logz¦?1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQ α (z) for variousα in the range 0<α<1. The functionQ α (z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as $$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$ with $$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$ It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε n (ω) is shown to be directly related toQ α (z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions $$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$ the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).  相似文献   

20.
We study the plane rotator model with hamiltonian $$ - \frac{1}{2}\sum\limits_{x \ne y} {J_{xy} \frac{{\cos (\theta _x - \theta _y )}}{{\left| {\left. {x - y} \right|} \right.^{3 + \in } }}}$$ whereJ xy for different pair (x, y) are independent symmetric random variables. It is proved that for almost allJ, all the Gibbs statesP(J) are rotation invariant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号