首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
An overview of the special issue of the Journal of Nanoparticle Research on nanotechnology and occupational health is presented.  相似文献   

2.
We report findings from a national telephone survey on levels of knowledge about and attitudes toward nanotechnology that demonstrate how people make decisions about emerging technologies. Our findings confirm previous research that suggests that people form opinions and attitudes even in the absence of relevant scientific or policy-related information. In fact, our data show that cognitive shortcuts or heuristics – often provided by mass media – are currently a key factor in influencing how the public thinks about nanotechnology and about its risks and benefits, and in determining the level of support among the public for further funding for research in this area.  相似文献   

3.
A January 2005 telephone survey of 1200 people in the U.S. and 2000 Canadians provides a snapshot of current North American opinion regarding nanotechnology at this crucial early point in its emergence from the laboratory to the arena of public discourse and public understanding. Using a typology of “publics” developed through analysis of a previous comparative survey (Priest, S., 2006) and subsequently tested against these newer data (Priest, S., 2005) this article describes the opinion climate for nanotechnology across North America. The comparison of key results from the two countries helps illustrate how social and cultural differences contribute to reactions to new technologies, including nanotech. The article also discusses implications for nanotechnology-related public outreach and risk communication efforts.  相似文献   

4.
Nanotechnology and the need for risk governance   总被引:10,自引:0,他引:10  
After identifying the main characteristics and prospects of nanotechnology as an emerging technology, the paper presents the general risks associated with nanotechnology applications and the deficits of the risk governance process today, concluding with recommendations to governments, industry, international organizations and other stakeholders. The International Risk Governance Council (IRGC) has identified a governance gap between the requirements pertaining to the nano- rather than the micro-/macro- technologies. The novel attributes of nanotechnology demand different routes for risk-benefit assessment and risk management, and at present, nanotechnology innovation proceeds ahead of the policy and regulatory environment. In the shorter term, the governance gap is significant for those passive nanostructures that are currently in production and have high exposure rates; and is especially significant for the several ‘active’ nanoscale structures and nanosystems that we can expect to be on the market in the near future. Active nanoscale structures and nanosystems have the potential to affect not only human health and the environment but also aspects of social lifestyle, human identity and cultural values. The main recommendations of the report deal with selected higher risk nanotechnology applications, short- and long-term issues, and global models for nanotechnology governance.  相似文献   

5.
Science based on the unified concepts on matter at the nanoscale provides a new foundation for knowledge creation, innovation, and technology integration. Convergent new technologies refers to the synergistic combination of nanotechnology, biotechnology, information technology and cognitive sciences (NBIC), each of which is currently progressing at a rapid rate, experiencing qualitative advancements, and interacting with the more established fields such as mathematics and environmental technologies (Roco & Bainbridge, 2002). It is expected that converging technologies will bring about tremendous improvements in transforming tools, new products and services, enable human personal abilities and social achievements, and reshape societal relationships.After a brief overview of the general implications of converging new technologies, this paper focuses on its effects on R&D policies and business models as part of changing societal relationships. These R&D policies will have implications on investments in research and industry, with the main goal of taking advantage of the transformative development of NBIC. Introduction of converging technologies must be done with respect of immediate concerns (privacy, toxicity of new materials, etc.) and longer-term concerns including human integrity, dignity and welfare. The efficient introduction and development of converging new technologies will require new organizations and business models, as well as solutions for preparing the economy, such as multifunctional research facilities, integrative technology platforms, and global risk governance.(*) This is an extension of the presentation made at the Converging Technologies Conference, February 26, 2004, New York.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

6.
Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8.  相似文献   

7.
Nanotechnology applications are rapidly expanding in various fields because of its unique qualities, such as a large surface area. Also, the synthetic changes can be utilized to alter nanomaterial to fit into specialized necessities. From the last decade there is a tremendous increase in the utilization of nanotechnology and nanomaterials in the petroleum industry. The current review's main objective is to summarize numerous nanoparticle applications in the field of petroleum, bio-fuel formation, and clean-up treatments of oil spill-related issues with their existing challenges that may help improve further research.  相似文献   

8.
Michael Bowker   《Surface science》2009,603(16):2359-2362
Surface science has progressed from its beginnings, which focused on simple materials and adsorbates, to the study of much more complex materials. In this article I focus on the developments in the field of nanoparticle surface science, especially those relating to advances in our understanding of heterogeneous catalysis. Methods to make such materials and to characterise oxidic supports have advanced enormously in the last few years, but efforts in the field are still rather limited and patchy. Such work will expand significantly in the next few years and many new, exciting discoveries await us. Important areas for development include the fabrication of ordered arrays of monodisperse nanoparticles, imaging small metal particles at atomic resolution and carrying such investigations out under high pressure/temperature conditions in order to identify active sites on nanoparticles under realistic conditions.  相似文献   

9.
Nanotechnology will be an increasing part of the everyday lives of most people in the world. There is a general recognition that few people understand the implications of the technology, the technology itself or even the definition of the word. This lack of understanding stems from a lack of knowledge about science in general but more specifically difficulty in grasping the size scale and symbolism of nanotechnology. A potential key to informing the general public is establishing the ability to comprehend the scale of nanotechnology. Transitioning from the macro to the nanoscale seems to require an ability to comprehend scales of one-billion. Scaling is a skill not common in most individuals and tests of their ability to extrapolate size based upon scaling a common object demonstrates that most individuals cannot scale to the extent needed to make the transition to nanoscale. Symbolism is another important vehicle to providing the general public with a basis to understand the concepts of nanotechnology. With increasing age, individuals are able to draw representations of atomic scale objects, but these tend to be iconic and the different representations not easily translated. Ball and stick models are most recognized by the public, which provides an opportunity to present not only useful symbolism but also a reference point for the atomic scale.  相似文献   

10.
We discuss the scientific impact of Latin American scientists in the field of materials science. The analysis is based on the h‐index as the scientometric index used to quantify the scientific productivity of an individual. In particular, we focus our analysis in México, Chile and Colombia. We compare the level of productivity between all these countries. We also analyzed the h‐index as function of the biological age, by using the first year of publication of a given scientists as a reference and discussed the general distribution of its quantification. We do not find a clear relationship between these two quantities. Based in our results we propose some political measures that these countries could implement to improve productivity as well as scientific development in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号