首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.   相似文献   

2.
The Vlasov equation governs the evolution of the single-particle probability distribution function (PDF) for a system of particles interacting without dissipation. Its singular solutions correspond to the individual particle motions. The operation of taking the moments of the Vlasov equation is a Poisson map. The resulting Lie-Poisson Hamiltonian dynamics of the Vlasov moments is found to be integrable is several cases. For example, the dynamics for coasting beams in particle accelerators is associated by a hodograph transformation to the known integrable Benney shallow-water equation. After setting the context, the Letter focuses on geodesic Vlasov moment equations. Continuum closures of these equations at two different orders are found to be integrable systems whose singular solutions characterize the geodesic motion of the individual particles.  相似文献   

3.
The behavior of geodesic curves on even seemingly simple surfaces can be surprisingly complex. In this paper we use the Hamiltonian formulation of the geodesic equations to analyze their integrability properties. In particular, we examine the behavior of geodesics on surfaces defined by the spherical harmonics. Using the Morales-Ramis theorem and Kovacic algorithm we are able to prove that the geodesic equations on all surfaces defined by the sectoral harmonics are not integrable, and we use Poincaré sections to demonstrate the breakdown of regular motion.  相似文献   

4.
We consider the problem of coarsening in two dimensions for the real (scalar) Ginzburg–Landau equation. This equation has exactly two stable stationary solutions, the constant functions +1 and −1. We assume most of the initial condition is in the “−1” phase with islands of “+1” phase. We use invariant manifold techniques to prove that the boundary of a circular island moves according to Allen–Cahn curvature motion law. We give a criterion for non-interaction of two arbitrary interfaces and a criterion for merging of two nearby interfaces.  相似文献   

5.
6.
The renormalization group (RG) method as a powerful tool for reduction of evolution equations is formulated in terms of the notion of invariant manifolds. We start with derivation of an exact RG equation which is analogous to the Wilsonian RG equations in statistical physics and quantum field theory. It is clarified that the perturbative RG method constructs invariant manifolds successively as the initial value of evolution equations, thereby the meaning to set t0=t is naturally understood where t0 is the arbitrary initial time. We show that the integral constants in the unperturbative solution constitutes natural coordinates of the invariant manifold when the linear operator A in the evolution equation is semi-simple, i.e., diagonalizable; when A is not semi-simple and has a Jordan cell, a slight modification is necessary because the dimension of the invariant manifold is increased by the perturbation. The RG equation determines the slow motion of the would-be integral constants in the unperturbative solution on the invariant manifold. We present the mechanical procedure to construct the perturbative solutions hence the initial values with which the RG equation gives meaningful results. The underlying structure of the reduction by the RG method as formulated in the present work turns out to completely fit to the universal one elucidated by Kuramoto some years ago. We indicate that the reduction procedure of evolution equations has a good correspondence with the renormalization procedure in quantum field theory; the counter part of the universal structure of reduction elucidated by Kuramoto may be Polchinski's theorem for renormalizable field theories. We apply the method to interface dynamics such as kink–anti-kink and soliton–soliton interactions in the latter of which a linear operator having a Jordan-cell structure appears.  相似文献   

7.
We apply a method analogous to the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold, using a method which identifies the symplectic structure of the corresponding mechanics, to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics. In this way, we demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. We then discuss the interesting case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg–Schrödinger equation. The locally symplectic structure which emerges is that of a generally covariant form of Stueckelberg's mechanics on this manifold.  相似文献   

8.
Yulia Yu. Bagderina   《Physics letters. A》2009,373(47):4322-4327
We find a new family of fifth-order water-wave equations having common invariant manifold of the fourth order. These evolution equations are nonintegrable except for two cases corresponding to the Sawada–Kotera and Kaup–Kupershmidt equations. The invariant manifold of the family is an autonomous equation F-VI from the Cosgrove's classification of fourth-order ODEs having the Painlevé property. Two-parameter solutions of the equation F-VI allow to find two-soliton solutions for this family of evolution equations.  相似文献   

9.
We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding “transfer” matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix.  相似文献   

10.
We study the geodesic motion of pseudo-classical spinning particles in the NUT–Reissner–Nordstrom space–time. We investigate the generalized Killing equations for spinning space and derive the constants of the motion in terms of the solutions of these equations. We give an analysis of the motion on a cone and on a plane.  相似文献   

11.
We show that, as distinct from completely integrable Hamiltonian systems, a commutative partially integrable system admits different compatible Poisson structures on a phase manifold that are related by a recursion operator. The existence of action–angle coordinates around an invariant submanifold of such a partially integrable system is proved.  相似文献   

12.
We first derive the relation between the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold using a method which identifies the symplectic structure of the corresponding mechanics. We then apply an analogous method to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelbergs covariant classical and quantum dynamics to demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. No motion of the medium is required. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. Finally, we discuss the interesting case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg-Schrödinger equation. This construction provides a model for an underlying quantum mechanical structure for classical dynamical motion along geodesics on a pseudo-Riemannian manifold. The locally symplectic structure which emerges is that of Stueckelbergs covariant mechanics on this manifold.This revised version was published online in April 2005. The publishing date was inserted.  相似文献   

13.
We consider the dynamics invariant under the action of l-conformal Galilei group using the method of nonlinear realizations. We find that by an appropriate choice of the coset space parametrization one can achieve the complete decoupling of the equations of motion. The Lagrangian and Hamiltonian are constructed. The results are compared with those obtained by Galajinsky and Masterov (2013) [14].  相似文献   

14.
We consider Chaplygin's equations [Izd. Akad. Nauk SSSR 3, 3 (1933)] describing the planar motion of a rigid body in an unbounded volume of an ideal fluid while circulation around the body is not zero. Hamiltonian structures and new integrable cases are revealed; certain remarkable partial solutions are found and their stability is examined. The nonintegrability of the system describing the motion of a body in the field of gravity is proved and the chaotic behavior of the system is illustrated.  相似文献   

15.
During the last few decades, algebraic geometry has become a tool for solving differential equations and spectral questions of mechanics and mathematical physics. This paper deals with the study of the integrable systems from the point of view of algebraic geometry, inverse spectral problems and mechanics from the point of view of Lie groups. Section 1 is preliminary giving a little background. In Section 2, we study a Lie algebra theoretical method leading to completely integrable systems, based on the Kostant-Kirillov coadjoint action. Section 3 is devoted to illustrate how to decide about the algebraic complete integrability (a.c.i.) of Hamiltonian systems. Algebraic integrability means that the system is completely integrable in the sense of the phase space being foliated by tori, which in addition are real parts of a complex algebraic tori (abelian varieties). Adler-van Moerbeke's method is a very useful tool not only to discover among families of Hamiltonian systems those which are a.c.i., but also to characterize and describe the algebraic nature of the invariant tori (periods, etc.) for the a.c.i. systems. Some integrable systems, such as Kortewege—de Vries equation, Toda lattice, Euler rigid body motion, Kowalewski's top, Manakov's geodesic flow on S O (4), etc. are treated.  相似文献   

16.
A new class of Hamiltonian dynamical systems with two degrees of freedom is studied, for which the Hamiltonian function is a linear form with respect to moduli of both momenta. For different potentials such systems can be either completely integrable or behave just as normal nonintegrable Hamiltonian systems with two degrees of freedom: one observes many of the phenomena characteristic of the latter ones, such as a breakdown of invariant tori as soon as the integrability is violated; a formation of stochastic layers around destroyed separatrices; bifurcations of periodic orbits, etc. At the same time, the equations of motion are simply integrated on subsequent adjacent time intervals, as in billiard systems; i.e., all the trajectories can be calculated explicitly: Given an initial data, the state of the system is uniquely determined for any moment. This feature of systems in interest makes them very attractive models for a study of nonlinear phenomena in finite-dimensional Hamiltonian systems. A simple representative model of this class (a model with quadratic potential), whose dynamics is typical, is studied in detail. (c) 1997 American Institute of Physics.  相似文献   

17.
A qualitative analysis of the energy and momentum integrals for the Mathisson-Papapetrou equations in a Schwarzschild field is employed to determine the conditions under which all solutions of the exact Mathisson-Papapetrou equations corresponding to fixed initial coordinate and velocity values differ significantly from the solution of the abbreviated equations normally used for the same initial data. Numerical computer calculations provide additional indication of a difference in the world lines of the exact Mathisson-Papapetrou equations from solutions of the geodesic equations at ultrarelativistic velocity values. For high energy particles entering into the composition of cosmic rays one can expect appearance of gravitational ultrarelativistic spin-orbital interaction upon motion of such particles in the field of a neutron star.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 8–12, October, 1985.  相似文献   

18.
We find concrete evidence for a recently discovered form of intermittency, referred to as in-out intermittency, in both partial differential equation (PDE) and ordinary differential equation (ODE) models of mean field dynamos. This type of intermittency [introduced in P. Ashwin, E. Covas, and R. Tavakol, Nonlinearity 9, 563 (1999)] occurs in systems with invariant submanifolds and, as opposed to on-off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behavior may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in-out intermittency are axisymmetric mean-field dynamo models which are often used to study the observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities. (c) 2001 American Institute of Physics.  相似文献   

19.
We consider a two-component Hamiltonian system of partial differential equations with quadratic nonlinearities introduced by Popowicz, which has the form of a coupling between the Camassa–Holm and Degasperis–Procesi equations. Despite having reductions to these two integrable partial differential equations, the Popowicz system itself is not integrable. Nevertheless, as one of the authors showed with Irle, it admits distributional solutions of peaked soliton (peakon) type, with the dynamics of N peakons being determined by a Hamiltonian system on a phase space of dimension 3N. As well as the trivial case of a single peakon (N=1), the case N=2 is Liouville integrable. We present the explicit solution for the two-peakon dynamics, and describe some of the novel features of the interaction of peakons in the Popowicz system.  相似文献   

20.
We propose to study the behavior of complicated numerical solutions to Einstein's equations for generic cosmologies by following the geodesic motion of a swarm of test particles. As an example, we consider a cylinder of test particles initially at rest in the plane symmetric Gowdy universe onT 3×R. For a circle of test particles in the symmetry plane, the geodesic equations predict evolution of the circle into distortions and rotations of an ellipse as well as motion perpendicular to the plane. The evolutionary sequence of ellipses depends on the initial position of the circle of particles. We display snapshots of the evolution of the cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号