首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper presents a method for measuring the thickness and velocities of body waves and the density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer’s thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected from the surfaces of the layer and the density is computed by the amplitudes of these components. An experimental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that the error in measuring the thickness and velocities of body waves does not exceed 1% and the density measurement error does not exceed 10%.  相似文献   

2.
An acoustic microscope with a cylindrical lens and ultrasound transducer have been considered, as well as the method based on it for the measuring of longitudinal and transverse wave velocities, the thickness and density of the investigated layer. A theoretical model of the microscope has been constructed, and the relation between the spatiotemporal output signal of the transducer and the angular dependence of the sample reflection coefficient has been found. It has been shown that the velocities of body waves and the thickness can be determined by the delays of ultrasound responses reflected from the layer boundaries measured by the transducer elements, and the density, by the amplitudes of these responses. The method was tested experimentally using a 20-element transducer with a central frequency of 15 MHz and a period of 0.8 mm. The example of a duralumin plate has shown that the error in measuring the thickness and velocity of longitudinal waves error does not exceed 1%; the velocity of transverse waves, 2%; and the density can be estimated with an accuracy of about 5%.  相似文献   

3.
A. Faure  G. Maze  J. Ripoche 《Ultrasonics》1976,14(5):205-208
Using an optical method a surface wave is detected ‘in situ’, which is the reflection from an immersed plane metallic surface, of an ultrasonic beam propagating in water. The amplitude and attenuation of the beam are measured on a stainless steel sample and it is shown that the attenuation fits the f4 law, where f is the frequency.  相似文献   

4.
The scattering of electromagnetic wave by an array of parallel metallic single-walled carbon nanotubes is investigated based on the boundary-value method. Electronic excitations over each nanotube surface are modeled as an infinitesimally thin cylindrical layer of the free-electron gas. The scattering cross section of both transverse magnetic (TM) and transverse electric (TE) uniform plane waves by the system at normal incidences is obtained.  相似文献   

5.
A method for determination of the complete set of physical, geometrical, and interfacial properties of an isotropic layer embedded between two known solids is discussed. These properties are: Lamé elastic moduli, density and thickness of the layer, and complex normal and transverse interfacial stiffnesses between the layer and the substrates. The properties are combined in the form of eight nondimensional parameters, which are determined from experimental reflection spectra at two incident angles: normal and oblique. The conditions for simultaneous determination of bulk layer properties and the interface normal and transverse springs with losses and the stability of the inversion method against data scatter are addressed. The inversion model is validated by experiment on normal and angular ultrasonic reflectivity from a layer between two semispaces in dry mechanical contact and from an environmentally degraded adhesive joint. The layer properties were measured independently, showing good agreement with the reconstructed results.  相似文献   

6.
This paper presents a numerical model for the evaluation of mechanical properties of a relatively thin hydrogel. The model utilizes a system identification method to evaluate the acoustical parameters from ultrasonic measurement data. The model involves the calculation of the forward model based on an ultrasonic wave propagation incorporating diffraction effect. Ultrasonic measurements of a hydrogel are also performed in a reflection mode. A Nonlinear Least Square (NLS) algorithm is employed to minimize difference between the results from the model and the experimental data. The acoustical parameters associated with the model are effectively modified to achieve the minimum error. As a result, the parameters of PVA hydrogels namely thickness, density, an ultrasonic attenuation coefficient and dispersion velocity are effectively determined. In order to validate the model, the conventional density measurements of hydrogels were also performed.  相似文献   

7.
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).  相似文献   

8.
The attenuation of transverse ultrasound in germanium, silicon, and diamond crystals is considered with allowance for competing isotopic and anharmonic scattering processes. The dependence of the attenuation of transverse ultrasound on the direction of the wave vector of quasi-transverse phonons is analyzed within an anisotropic continuum model. The Landau—Rumer mechanism is considered for anharmonic scattering processes. Given the second-and third-order elastic moduli, the parameters are found determining ultrasonic absorption in the above crystals with various degrees of isotopic disorder. The attenuation coefficients of transverse ultrasound associated with isotopic and anharmonic scattering processes are shown to have qualitatively different angular dependences. Therefore, from studying the anisotropic attenuation of ultrasound in cubic crystals, one can determine the dominant mechanism of ultrasonic absorption in isotopically modified crystals.  相似文献   

9.
This paper concerns propagation and attenuation of sound waves through acoustically lined ducts. For a cylindrical duct whose liner consists of a point-reacting porous material layer backed by cellular cavities, the admittance formula derived by taking into account a wave motion within the liner is applied to an analysis of waves propagating downstream. For the point-reacting liner of fixed porous material properties, influences of the porous layer thickness, cellular cavity depth, mean flow profile, and three dimensionality of the duct (i.e., cylindrical or plane) on the attenuation are examined. The results show a significant role of the porous layer thickness. For the cylindrical duct, attenuation spectra evaluated from this analysis are compared with those given by the widely used semi-empirical formula.  相似文献   

10.
The objective of this work is the contrary issues of ultrasonic diagnostics in medicine when modern requirements for resolution are in conflict with strict safety issues. There is only one way to make progress by starting to take into account the attenuation in biological tissues and the wave diffraction phenomena. The aim of this work is to develop the flexible ultrasound field model implemented in routine algorithms of digital signal processing. The method consists of the calculation of plane wave propagation and the calculation of an ultrasound signal field. On the basis of the spatial impulse response of an aperture for calculation of space-spread ultrasound signals and the spectrum decomposition method for modelling plane wave propagation in lossy media, the modified method of spatial superposition of attenuated waves was developed. Using the method of equidistant line calculation the time and frequency features of the ultrasound signal field caused by the geometry and dynamics of the aperture, the attenuation and velocity dispersion in the medium are determined. The method was successfully applied to the investigation of the system for intracranial media monitoring, where a new measurement channel based on the changes of attenuation and dispersion in intracranial medium has been implemented.  相似文献   

11.
For medical ultrasonic imaging and for nondestructive testing, the attenuation of pressure waves and the resulting shift in wave velocity are important features in commonly used transmission media such as biological tissue. An algorithm for the numerical evaluation of pressure field distributions generated by ultrasonic transducers is presented. The attenuation and dispersion of the sound transmission medium are taken into consideration. The sound fields are computed numerically for continuous wave as well as pulse excitation. The transducer has plane or gently curved geometry and is embedded in a plane rigid baffle. The numerically determined pressure fields are presented as 3D plots, as gray-scale images for a fixed time stamp (like a snapshot), or as isobars regarding the maximum values over time for each local point in the area under investigation. The algorithm described here can be utilized as a tool for design of ultrasound transducers, especially array antennas.  相似文献   

12.
钢-混凝土结构是土木工程中的一种常用结构形式,钢与混凝土粘接处可能出现弱粘接甚至完全脱粘的缺陷,严重影响结构的安全性。该文提出利用空气耦合超声导波衰减的方法实现钢-混凝土结构粘接状态的非接触无损检测方法,分析不同厚度粘接界面对超声导波衰减的影响。基于全局矩阵技术对钢-混凝土结构求解理论频散方程和衰减曲线,得到界面层不同粘接条件下的理论参数及衰减特性。建立不同粘接条件的有限元模型,定量分析不同模态对粘接缺陷的检测敏感度。研究界面层厚度分别为1 mm和2 mm两种情况下S0能量的衰减情况。研究结果表明:S0模态可有效判断粘接结构的粘接状态,对于同一界面层厚度,随着界面粘接条件变弱,S0最大幅值与A0最大幅值比不断增大;不同厚度同一粘接条件下,2 mm相较于1 mm该值更大。该方法在钢-混凝土结构粘接界面缺陷的检测方面具有良好的应用价值和发展前景。  相似文献   

13.
Robust signal processing methods adapted to clinical measurements of guided modes are required to assess bone properties such as cortical thickness and porosity. Recently, an approach based on the singular value decomposition (SVD) of multidimensional signals recorded with an axial transmission array of emitters and receivers has been proposed for materials with negligible absorption, see Minonzio et al. [J. Acoust. Soc. Am. 127, 2913-2919 (2010)]. In presence of absorption, the ability to extract guided mode degrades. The objective of the present study is to extend the method to the case of absorbing media, considering attenuated plane waves (complex wavenumber). The guided mode wavenumber extraction is enhanced and the order of magnitude of the attenuation of the guided mode is estimated. Experiments have been carried out on 2 mm thick plates in the 0.2-2 MHz bandwidth. Two materials are inspected: polymethylacrylate (PMMA) (isotropic with absorption) and artificial composite bones (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) which is a transverse isotropic absorbing medium. Bulk wave velocities and bulk attenuation have been evaluated from transmission measurements. These values were used to compute theoretical Lamb mode wavenumbers which are consistent with the experimental ones obtained with the SVD-based approach.  相似文献   

14.
采用空间透射波测量方法,实验研究透波密闭石英玻璃容器内等离子体喷流对垂直和水平极化电磁波的衰减,在有和无外加磁场条件下分析实验参数对等离子吸波效应的影响,分析等离子体的吸波机理.实验结果表明在非磁和本实验条件下,平面电磁波在等离子体中的衰减机理为碰撞吸收;在有磁和本实验条件下,平面电磁波在磁等离子体中的衰减机理同样为碰撞吸收,但是外加磁场的存在有限地改善了等离子体的吸波效应.为了使磁等离子体最有效地吸收电磁波,应该提高磁场感应强度,把高频混杂频率提高到测试微波频率范围内,或降低微波测试频率至本实验中的高混 关键词: 等离子体相互作用 电磁波 电磁波在等离子体中的传输  相似文献   

15.
除垢超声波传播影响因素的理论研究   总被引:1,自引:0,他引:1  
从一维平面波理论入手分析了超声波声压分布特性。依据多普勒频移原理,在声场的运动方程,连续性方程,波动方程的基础上,建立一个超声波在流动的液体中传播的控制方程。根据轴对称模型的实际特点,简化了所得方程,并求出解析解。结果表明流动液体可以产生声波的衰减。液体的黏滞性是产生超声波衰减的重要原因。超声波的频率较高,液体的黏滞性对超声波衰减影响明显。依据黏滞力与速度梯度的关系,建立一个超声波在黏滞液体传播的控制方程,并依据边界条件求出解析解,反映了媒质黏滞性对超声波传播尤其是衰减特性的影响。  相似文献   

16.
The method and results of measuring the shear elastic modulus of a rubberlike polymer by the deformation of a plane elastic layer are described. For shear deformations not exceeding 0.5 of the layer thickness, the shear modulus is constant and its value is in agreement with the value determined by pressing a rigid ball against the polymer layer. For deformations exceeding 0.5 of the layer thickness, the stress-strain dependence becomes nonlinear. The coefficient of shear viscosity is determined from the shear wave form generated by focused ultrasound in a homogeneous polymer sample.  相似文献   

17.
The two implicit equations that contain the dispersion laws of waves propagating in a He II layer of variable thickness are formally investigated for solutions that go beyond those associated with the layer modifications of first and second sound: A series of symmetric and antisymmetric layer modes are found to exist by calculating the distribution of roots of the dispersion equations in the complex wave number plane as a function of layer thickness and angular frequency. All these modes turn out to be strongly attenuated and can be regarded as layer modifications of the viscous wave. Phase velocities, attenuation coefficients, and velocity profiles of some of them are calculated numerically.  相似文献   

18.
This paper proposes a method of simultaneous determination of the four layer parameters (mass density,longitudinal velocity,the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves.The analytical formula of the layer thickness related to the measured transmitted transfer functions is derived.The two determination steps of the four layer parameters are developed,in which acoustic impedance,time-of-flight and attenuation are first determined by the reflected transfer functions.Using the derived formula,it successively calculates and determines the layer thickness,longitudinal velocity and mass density by the measured transmitted transfer functions.According to the two determination steps,a more feasible and simplified measurement setups is described.It is found that only three signals (the reference waves,the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters.A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made.This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.  相似文献   

19.
The electromagnetic wave scattering from a metallic two-walled carbon nanotube is studied. The system is assumed to be illuminated by either a transverse magnetic or a transverse electric wave. Boundary-value method is used to evaluate the scattering characteristics of the system. Electronic excitations of each wall of nanotube are modeled as an infinitesimally thin cylindrical layer of the free-electron gas described previously by means of the linearized fluid theory. The computed results include the evaluation of the normalized scattering width of both transverse magnetic and transverse electric uniform plane wave by system at normal incidences.  相似文献   

20.
Periodic composite ultrasonic transducers offer many advantages but the periodic pillar architecture can give rise to unwanted modes of vibration which interfere with the piston like motion of the fundamental thickness mode. In this paper, viscoelastic loss is incorporated into a three-dimensional plane wave expansion model (PWE) of these transducers. A comparison with experimental and finite element data is conducted and a design to damp out these lateral modes is investigated. Scaling and regularisation techniques are introduced to the PWE method to reduce ill-conditioning in the large matrices which can arise. The identification of the modes of vibration is aided by examining profiles of the displacements, electrical potential and Poynting vector. The dispersive behaviour of a 2-2 composite transducer with high shear attenuation in the passive phase is examined. The model shows that the use of a high shear attenuation filler material improves the frequency band gap surrounding the fundamental thickness mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号