首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HfO2 films 5 nm thick grown on Si(100) substrates by the methods of MOCVD hydride epitaxy and atomic layer deposition (ALD) are studied using X-ray photoelectron spectroscopy combined with Ar+ ion etching and X-ray reflectometry. It is found that (i) the ALD-grown HfO2 films are amorphous, while the MOCVD-grown films show signs of a crystal structure; (ii) the surface of the ALD-grown films is more prone to contamination and/or is more reactive; and (iii) the amount of interfacial silicon dioxide in the case of the MOCVD-grown film is greater than in the case of the films synthesized by ALD. It is also shown that the argon ion etching of the HfO2 film results in the formation of a metallic hafnium layer at the interface. This indicates that HfO2 can be used not only as a gate dielectric but also as a material suitable for fabricating nanodimensional conductors by direct decomposition.  相似文献   

2.
The microstructures of amorphous and polycrystalline ferroelectric Hf0.5Zr0.5O2 films are studied by X-ray spectroscopy and ellipsometry. EXAFS spectra demonstrate that the amorphous film consists of an “incompletely mixed” solid solution of metallic oxides HfO2 and ZrO2. After rapid thermal annealing, the mixed Hf0.5Zr0.5O2 oxide films have a more ordered polycrystalline structure, and individual Hf and Zr monoxide islands are formed in the films. These islands are several nanometers in size and have a structure that is similar to the monoclinic structure of HfO2 and ZrO2. The presence of the HfO2 and ZrO2 phases in the Hf0.5Zr0.5O2 films is also detected by ellipsometry.  相似文献   

3.
An increase in the density of states between the oxygen 2p bands and the Fermi level is seen with increasing Gd concentrations. In addition, for the Gd-doped HfO2 films, the Gd 4f photoexcitation peak at 5.5 eV below the valence band maximum was identified using resonant photoemission. Electrical measurements show pronounced rectification properties for lightly-doped Gd:HfO2 films on p-Si and for heavily-doped Gd:HfO2 films on n-Si, suggesting a crossover from n-type to p-type behavior with increasing doping level. In addition, there is an increase in the reverse bias current with neutron irradiation.  相似文献   

4.
Liu  Lifeng  Chen  Bing  Gao  Bin  Zhang  Feifei  Chen  Yuansha  Liu  Xiaoyan  Wang  Yi  Han  Ruqi  Kang  Jinfeng 《Applied Physics A: Materials Science & Processing》2011,102(4):991-996
Based on a unified physical model and first-principle calculations, a material-oriented methodology has been proposed to control the bipolar switching behavior of an oxide-based resistive random access memory (RRAM) cell. According to the material-oriented methodology, the oxide-based RRAM cell can be designed by material engineering to achieve the required device performance. In this article, a Gd-doped HfO2 RRAM cell with excellent bipolar switching characteristics is developed to meet the requirements of memristive device application. The typical memristive characteristics of the Gd-doped HfO2 RRAM cell are presented, and the mechanism is discussed.  相似文献   

5.
(Au, Pt)/HfO2/SiO2/n-Si(001) metal-oxide-semiconductor structures with a thin (≈0.5 nm) SiO2 layer, which is formed between HfO2 and Si during atomic layer deposition of oxide layers, have been investigated via ballistic electron emission spectroscopy. The potential barrier heights at the (Au, Pt)/HfO2 interfaces have been determined experimentally. The peculiarities observed in the curves of dependence of the collector current on the voltage between a scanning tunneling microscope probe and a metallic electrode are related to electron transport through the vacancy defect region of HfO2 and the quantum-mechanical interference of electron waves arising from multiple reflections at the interfaces of the two-layer dielectric and at the interfaces of dielectric with a substrate and a metallic electrode.  相似文献   

6.
The spectral and luminescent characteristics of samples of Y2O3:Nd3+ ceramics obtained from different precursors under different preparation conditions (the concentration of an HfO2 compacting additive, the temperature and time of synthesis) are studied at 300 and 77 K. It is shown that the spectral positions of absorption and luminescence lines of ceramics correspond to those of a Y2O3:Nd3+ single crystal. At the same time, the absorption and luminescence spectra show an inhomogeneous broadening, characteristic of disordered crystals and glass. The energies of the 4 I 9/2 and 4 F 3/2 Stark states of the Nd3+ ion are calculated. The calculation results nearly coincide with the data from the literature for the Y2O3:Nd3+ single crystal and transparent ceramics. Samples containing the compacting additive show additional lines, whose intensities correlate with its concentration and the method of preparation of Y2O3:Nd3+ ultradispersed powders. It is assumed that these lines are related to the fact that either Nd3+ ions enter the composition of the HfO2 compacting additive or Hf4+ ions are present in the nearest environment of Nd3+ ions at the boundaries of granules enriched with HfO2.  相似文献   

7.
Pure and Gd-doped BiFeO3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO3. The incorporation of Gd in BiFeO3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.  相似文献   

8.
The results of the spectroscopic analysis of transition strengths for Er3+ ions in a series of Hf:Er:LiNbO3 crystals with variable Hf content and fixed Er content are reported. Unpolarized UV-VIS-NIR absorption spectra, upconversion fluorescence spectra excited at 800 nm, and microsecond time-resolved spectra excited at 400 nm and 800 nm by 800 nm femtosecond laser were measured at room temperature. The HfO2 incorporation has influence on Er3+ radiative lifetimes, and fluorescence branching ratios. For Hf(4 mol %):Er(1 mol %):LiNbO3, Ω2=2.63×10-20 cm2, Ω4=2.86×10-20 cm2, and Ω6=0.72×10-20 cm2. Ω24 is contrary to the Er3+ general trend of Ω246 when the Hf content is below its threshold concentration. In addition, the sum of Ω increases with the Hf content when the HfO2 content below 6 mol % is unfamiliar. The upconversion mechanism is discussed in this work. PACS 71.20.Eh; 77.84.Dy; 42.62.Fi; 42.65.Ky  相似文献   

9.
We apply Raman scattering spectroscopy to study the nature of carbon inclusions in Al2O3 and (HfO2) x (Al2O3)1 ? x films deposited using volatile complex compounds. Raman spectra of the films under investigation contain D and G vibrational modes, which indicate that carbon clusters of the sp 2 configuration tend to form in the films. We estimate the size of clusters from the integrated intensity ratio I D /I G and find it to be in the range of 14–20 Å. The content of hydrogen in carbon clusters is calculated from the height of the photoluminescence pedestal and is found to vary from 14 to 30 at % depending on the regime of the film’s synthesis.  相似文献   

10.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

11.
The extent and phase chemical composition of the interface forming under atomic layer deposition (ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depthresolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2 oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure.  相似文献   

12.
Transmission electron microscopy structural characterization of HfO2/GaAs(001) heterostructures grown by molecular beam epitaxy with a film thickness of ∼ 5 nm was conducted. The study indicates that the room-temperature as-grown films are amorphous and the films crystallize into the monoclinic phase upon in situ post annealing at 540 °C in the growth chamber. Both types of films show an atomically sharp interface with GaAs(001) substrates. The crystalline monoclinic HfO2 films exhibit c-oriented epitaxy on the substrate and consist of 90° domains. The formation of 90° domains in the heterostructures, the details of the domain-wall configurations, and the possible impact of the walls and the frequently observed anti-phase boundaries in the films on electrical properties of the heterostructures are discussed. PACS 68.37.Lp; 68.37.Og; 68.35.bg  相似文献   

13.
The results of integrated studies of thin-film structures based on silicon and hafnium dioxides on silicon grown by electron-beam evaporation in vacuum are presented. The surface morphology, structural and phase composition of these films depending on the annealing temperature within 500–1100°C are studied. Special consideration is given to the change in the state of the interfaces after annealing. It is determined that annealing in a flow of nitrogen with the addition of oxygen (~10 vol %) at 700°C does not lead to structural and phase changes in the films, but the intensity of the electron paramagnetic resonance (EPR) spectra of uncompensated bonds on the HfO2-Si interface decreased. Annealing at higher temperatures stimulates crystallization of the HfO2 films and hafnium silicate is formed on the SiO2-HfO2 interface and suboxide SiO x appears on the HfO2-Si interface.  相似文献   

14.
The interfacial structures of HfO2 and HfAlO thin films on Si have been investigated using spatially resolved electron energy-loss spectroscopy. We have found that interfaces are not atomically sharp, and variation in the symmetry of the local atomic coordination lasts for a couple of monolayers for both the as-deposited HfO2 and the HfAlO samples. Annealing of the HfO2 film in the oxygen environment leads to the formation of a thick SiO2/SiOx stack layer in-between the original HfO2 and the Si substrate. As a comparison, the interfacial stability is significantly improved by Al incorporation into the HfO2 film (forming HfAlO), which effectively reduced/eliminated the interfacial silicon oxide formation during the oxygen annealing process. The mechanism of the high-k film/substrate stabilization by Al incorporation is discussed based on the experimental results.  相似文献   

15.
Magnetic core/shell (CS) nanocomposites (MNCs) are synthesized using a simple method, in which a magnesium ferrite nanoparticle (MgFe2O4) is a core, and an amorphous silicon dioxide (silica SiO2) layer is a shell. The composition, morphology, and structure of synthesized particles are studied using X-ray diffraction, field emission electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), scattering electrophoretic photometer, thermogravimetric analysis (TGA), and Mössbauer spectroscopy. It is found that the MgFe2O4/SiO2 MNC has the core/shell structure formed by the Fe?O–Si chemical bond. After coating with silica, the MgFe2O4/SiO2 MNC saturation magnetization significantly decreases in comparison with MgFe2O4 particles without a SiO2 shell. Spherical particles agglomerated from MgFe2O4 nanocrystallites ~9.6 and ~11.5 nm in size function as cores coated with SiO2 shells ~30 and ~50 nm thick, respectively. The total size of obtained CS MNCs is ~200 and 300 nm, respectively. Synthesized CS MgFe2O4/SiO2 MNCs are very promising for biomedical applications, due to the biological compatibility of silicon dioxide, its sizes, and the fact that the Curie temperature is in the region required for hyperthermal therapy, 320 K.  相似文献   

16.
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer.  相似文献   

17.
To meet challenges for a smaller transistor feature size, ultra-thin HfO2 high-k dielectric has been used to replace SiO2 for the gate dielectric. In order to accurately analyze the ultra-thin HfO2 films by grazing incidence X-ray reflectivity (GIXRR), an appropriate material model with a proper layer structure is required. However, the accurate model is difficult to obtain, since the interfaces between layers of the ultra-thin HfO2 films are not easily identified, especially when post-deposition annealing process is applied. In this paper, 3.0 nm HfO2 films were prepared by atomic layer deposition on p-type silicon wafer, and annealed in Ar environment with temperatures up to 1000 °C. The layer structures and the role of the interfacial layer of the films in the post-deposition annealing processes were evaluated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The experimental results and analysis showed that layer thicknesses, crystal phases and chemical structures of the ultra-thin HfO2 films were significantly dependent on annealing temperatures. The binding energy shifts of Hf 4f, O 1s, and Si 2p elements revealed the formation of Hf silicate (Hf-O-Si bonding) with increasing annealing temperatures. Due to the silicate formation and increasing silicon oxide formation, the interface broadening is highly expected. The structure analysis of the GIXRR spectra using the modified material structure model from the XPS analysis confirmed the interfacial broadening induced by the post-deposition annealing.  相似文献   

18.
Band bending and band alignment at HfO2/SiO2/Si and HfO2/Hf/SiO2/Si interfaces were investigated using X-ray photoelectron spectroscopy. After Hf-metal pre-deposition, a 0.55 eV band bending in Si and a 1.80 eV binding energy decrease for Hf 4f and O 1s of HfO2 were observed. This was attributed to the introduction of negative space charges at interface by Hf pre-deposition. Band bending decrease and synchronous binding energy increases of O 1s and Hf 4f for HfO2 were observed during initial Ar+ sputtering of the Hf pre-deposited sample. This was interpreted through the neutralization of negative space charges by sputtering-induced oxygen vacancies.  相似文献   

19.
20.
The un-doped and boron-doped silicon nanowires (SiNWs) were grown via vapor–liquid–solid (VLS) mechanism by low pressure chemical deposition (LPCVD). The diameters of un-doped and boron-doped SiNWs varied from 18.5 to 75.3 nm and 26.6 to 66.1 nm, respectively. The critical growth temperature of boron-doped SiNWs is 10°C lower than that of un-doped ones and the diameters of the boron-doped SiNWs is always larger than that of the un-doped ones under different growth temperatures. This is because that the introduction of diborane enhanced the dissociation of SiH4 which determines the growth process of SiNW. A growth process of silicon nanowire is proposed to describe the influence of B2H6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号