首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive comparison of calorimetric and dielectric measurements is carried out for generic molecular liquids and monohydroxy alcohols with focus on the identification of the dielectric modes which are associated with the glass transition. For generic liquids, the calorimetric glass transition temperatures (T g-cal) are always greater than their kinetic counterparts (T g-kin), but the difference remains below 3 K. Also, the nonexponentiality parameters of the Tool-Narayanaswamy-Moynihan-Hodge model applied to the calorimetric data and the stretching exponents of the dielectric measurements show remarkable agreement. The same behavior is found for glass-forming monohydroxy alcohols, provided that the faster and smaller non-Debye relaxation rather than the large dielectric Debye process is assigned to the structural relaxation. The study emphasizes that the dielectric signature of the glass transition in monohydroxy alcohols is a dispersive loss peak that is faster and significantly smaller than the prominent Debye feature.  相似文献   

2.
Dielectric relaxation and dynamic heat capacity measurements are compared for 2-ethyl-1-hexanol near its glass transition temperature Tg in order to further clarify the origin of the prominent Debye-type loss peak observed in many monohydroxy alcohols and other hydrogen-bonding liquids. While the dielectric spectrum epsilon" displays two distinct polarization processes that are separated by a factor of 2000 in terms of the peak frequency, the heat capacity cp" shows only a single peak. The dielectric process with lower amplitude and higher peak frequency coincides with the calorimetric signal, whereas the large dielectric Debye signal is not associated with calorimetric modes. The authors conclude that the Debye process corresponds to a transition among states which differ in energy only in the case of an external electric field.  相似文献   

3.
Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.  相似文献   

4.
Dielectric relaxation dynamics of secondary amides is explored in their supercooled state near the glass transition temperature Tg by investigating N-ethylacetamide and its mixtures with N-methylformamide. All the samples are found to exhibit giant dielectric permittivities, reaching over 500 in N-methylformamide-rich mixtures around Tg. For both the neat and binary systems, the predominant relaxation peak is of the Debye-type throughout the viscous regime, which is an unexpected feature for a glass former with intermediate fragility. The present results combined with the earlier reported high-temperature data reveal that the dielectric strength delta epsilon(D) of the Debye relaxation extrapolates to zero at frequencies of 10(10)-10(11) Hz, which is about two orders of magnitude lower than the phonon frequency limit typical of the structural relaxation. This Debye process is remarkably similar to the dielectric behavior of many monohydroxy alcohols, which implies a common nature of purely exponential relaxation dynamics in these liquids. Based on the dielectric properties, we conclude that the Debye relaxation in the secondary amides is not a direct signature of the primary or alpha-relaxation, the latter being obscured at low temperatures due to the relatively low permittivity and close spectral proximity to the Debye peak. As in the case of monohydroxy alcohols, dielectric polarization and structure fluctuate on different time scales in secondary amides. The Kirkwood-Fr?hlich correlation factors for Debye-type liquids are also discussed.  相似文献   

5.
With the recognition that the Debye-type dielectric relaxation of liquid monohydroxy alcohols does not reflect the structural relaxation dynamics associated with the viscous flow and the glass transition, its behavior upon dilution is expected to differ from that of real alpha-processes. We have investigated the Debye-type dielectric relaxation of binary alcohol/alkane mixtures across the entire concentration range in the supercooled regimes. The focus is on 2-ethyl-1-hexanol in two nonpolar liquids, 3-methylpentane and squalane, which are more fluid and more viscous than the alcohol, respectively. The Debye relaxation is found to occur only for alcohol mole fractions x > 0.2 and is always accompanied by a non-Debye relaxation originating from the alcohol component. Prior to its complete disappearance, the Debye relaxation is subject to broadening. We observe that the Debye dynamics of 2-ethyl-1-hexanol is accelerated in the more fluid 3-methylpentane, while the more viscous squalane leads to longer Debye relaxation times. The present experiments also provide evidence that the breakdown of the Debye relaxation amplitude does not imply the absence of hydrogen-bonded structures.  相似文献   

6.
Glass-forming monohydroxy alcohols exhibit two dielectric relaxation signals with super-Arrhenius temperature dependence: a Debye peak and an asymmetrically broadened alpha-process. We explore the behavior of these distinct relaxation features in mixtures of such liquids by dielectric measurements. The study focuses on the viscous regime of two binary systems: 2-methyl-1-butanol with 2-ethyl-1-hexanol and 1-propanol with 3,7-dimethyl-1-octanol. We find that the logarithmic relaxation time, log(tau), of the Debye peak follows an ideal mixing law (linear change with mole fraction), even in the case of mixing structurally dissimilar components. By contrast, the log(tau) versus mole fraction curve for the alpha-process is nonlinear, indicative of slower structural relaxation relative to the expectation on the basis of ideal mixing behavior. The latter observation is analogous to the effect of composition on viscosity, heat of mixing, and glass-transition temperature, whereas the ideal mixing of log(tau) seen for the Debye peak is the exception. We conclude that the unusual ideal mixing behavior of dielectric relaxation in monohydroxy alcohols is not a result of structural similarity, but rather yet more evidence of the Debye process being decoupled from other dynamic and thermodynamic properties.  相似文献   

7.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.  相似文献   

8.
Confinement of the glass-forming regions in the nanometer range influences the α-relaxation which is associated with the glass transition. These effects were investigated for semicrystalline poly(ethylene terephthalate) by dielectric spectroscopy and differential scanning calorimetry. The results are discussed within the concept of cooperative length, i.e. the characteristic length of the cooperative process of glass transition. Both experiments showed a dependence of the glass transition on the mean thickness of the amorphous layers. For the dielectric relaxation, the loss maximum was found to shift to higher temperatures with decreasing thickness of the amorphous layers, but no differences were observed in the curve shape for the differently crystallized samples. For the calorimetric measurements, in contrast, there was no correlation for the glass transition temperature, whereas the curve shape did correlate with the layer thickness of the mobile amorphous fraction. From the structure parameters, a characteristic length of approximately (2.5±1) nm was estimated for the unconfined glass relaxation (transition).  相似文献   

9.
The prominent Debye-type but non-Arrhenius dielectric relaxation is a feature common to many monohydroxy alcohols in their liquid state. Although this exponential process is often considered to reflect the primary structural relaxation, only a faster, smaller, and nonexponential relaxation peak correlates with viscous flow and mechanical relaxation. We provide dielectric relaxation data for 2-methyl-1-butanol, 2-ethyl-1-hexanol, and 3,7-dimethyl-1-octanol across ten decades in time. Based on these and previous results, we show that there exists a variety of dielectric to mechanical relaxation time ratios in the viscous regime, but a universal value of 100 for that ratio appears to evolve in the high temperature limit. The temperature dependence for both the relaxation time and strength of the Debye peak differs from the typical behavior of structural dynamics in terms of the alpha process. The implications of these findings for rationalizing the Debye-type dielectric process of hydrogen-bonded liquids are discussed.  相似文献   

10.
By measuring the dependences of the temperature-dependent primary ("alpha") dielectric relaxation time behavior on the temperature scanning rate for the glass-forming glycerol, we study the scaling of hysteresis at the glass transition in glycerol. Based on the Vogel-Fulcher-Tammann (VFT) expression and the Angell's fragility concept, notable correlations of the systematic kinetic fragility, and of the hysteresis effect in the vitrification∕fusion "alpha"-relaxation process of glycerol, with the temperature scanning rate, were reasonably analyzed and discussed. It was observed that the kinetic fragility m and the apparent glass-transition temperature hysteresis width ΔT(g)(a), respectively, scaled the temperature scanning rate q as m ≈ α(m)q(-γ) and ΔT(g)(a) ≈ A(0) + αq(β), at which the exponents, γ and β, were suggested to be characteristic of the resistance to the structure change or fragility change of the system during the glass transition. The observed scaling laws are quite similar to the scaling power law for the thermal hysteresis in the first-order phase transition (FOPT) of solids, providing a significant insight into the hysteresis effect in the glass transition of the glass-forming liquids.  相似文献   

11.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -12. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -12 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.  相似文献   

12.
脆性较高的玻璃形成分子液体通常在焓弛豫和介电弛豫动力学上表现出明显的差异性, 为了深入理解这一问题, 本文针对具有较高液体脆性的三乙酸甘油酯对比研究了焓弛豫与介电弛豫行为. 利用这两个技术分别研究了结构弛豫动力学过程的非Arrhenius 与非指数特征, 液体脆性因子与非指数性因子的对比显示很好的一致性. 分析表明分子的柔性有可能对这两种弛豫过程中分子运动的相关性产生明显的影响. 讨论了玻璃形成液体的分子结构与动力学参数之间的关联.  相似文献   

13.
The following properties are in the present literature associated with the behavior of supercooled glass-forming liquids: faster than exponential growth of the relaxation time, dynamical heterogeneities, growing point-to-set correlation length, crossover from mean-field behavior to activated dynamics. In this paper we argue that these properties are also present in a much simpler situation, namely the melting of the bulk of an ordered phase beyond a first order phase transition point. This is a promising path toward a better theoretical, numerical and experimental understanding of the above phenomena and of the physics of supercooled liquids. We discuss in detail the analogies and the differences between the glass and the bulk melting transitions.  相似文献   

14.
The experimentally observed characteristic features of the alpha-relaxation process in glass-forming liquids are the non-Arrhenius behavior of the structural relaxation times and the non-Debye character of the macroscopic relaxation function. The Avramov model in which relaxation is considered as an energy activation process of surmounting random barriers in liquid energy landscape was successfully applied to describe the temperature and pressure dependences of the macroscopic relaxation times or viscosity. In this paper, we consider the dielectric spectrum associated with Avramov model. The asymmetrical broadening of the loss spectra was found to be related directly to dispersion of the energy barrier distribution. However, it turns out that temperature dependence of the spectrum broadening as predicted by the Avromov model is at odds to experimental observation in glass-forming liquids.  相似文献   

15.
Characteristic temperatures and structural relaxation times for different classes of glass-forming polymer liquids are computed using a revised entropy theory of glass formation that permits the chain backbone and the side groups to have different rigidities. The theory is applied to glass formation at constant pressure or constant temperature. Our calculations provide new insights into physical factors influencing the breadth of the glass transition and the associated growth of relaxation times.  相似文献   

16.
We describe a model for the thermodynamics and dynamics of glass-forming liquids in terms of excitations from an ideal glass state to a Gaussian manifold of configurationally excited states. The quantitative fit of this three parameter model to the experimental data on excess entropy and heat capacity shows that "fragile" behavior, indicated by a sharply rising excess heat capacity as the glass transition is approached from above, occurs in anticipation of a first-order transition--usually hidden below the glass transition--to a "strong" liquid state of low excess entropy. The distinction between fragile and strong behavior of glass formers is traced back to an order of magnitude difference in the Gaussian width of their excitation energies. Simple relations connect the excess heat capacity to the Gaussian width parameter, and the liquid-liquid transition temperature, and strong, testable, predictions concerning the distinct properties of energy landscape for fragile liquids are made. The dynamic model relates relaxation to a hierarchical sequence of excitation events each involving the probability of accumulating sufficient kinetic energy on a separate excitable unit. Super-Arrhenius behavior of the relaxation rates, and the known correlation of kinetic with thermodynamic fragility, both follow from the way the rugged landscape induces fluctuations in the partitioning of energy between vibrational and configurational manifolds. A relation is derived in which the configurational heat capacity, rather than the configurational entropy of the Adam-Gibbs equation, controls the temperature dependence of the relaxation times, and this gives a comparable account of the experimental observations without postulating a divergent length scale. The familiar coincidence of zero mobility and Kauzmann temperatures is obtained as an approximate extrapolation of the theoretical equations. The comparison of the fits to excess thermodynamic properties of laboratory glass formers, and to configurational thermodynamics from simulations, reveals that the major portion of the excitation entropy responsible for fragile behavior resides in the low-frequency vibrational density of states. The thermodynamic transition predicted for fragile liquids emerges from beneath the glass transition in case of laboratory water and the unusual heat capacity behavior observed for this much studied liquid can be closely reproduced by the model.  相似文献   

17.
In this work, the variations of the relaxation times are investigated above and below the glass transition temperature of a model amorphous polymer, the polycarbonate. Three different techniques (calorimetric, dielectric and thermostimulated currents) are used to achieve this goal. The relaxation time at the glass transition temperature was determined at the temperature dependence convergence of the relaxation times calculated with dynamic dielectric spectroscopy (DDS) for the liquid state and thermostimulated depolarisation currents (TSDC) for the vitreous state. We find a value of τ(Tg) = 110 s for PC samples. The knowledge of the temperature dependence, τ(T), and the value τ(Tg) enables to determine the glass-forming liquid fragility index, m. We find m = 178 ± 5.  相似文献   

18.
Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly discussed.  相似文献   

19.
The dielectric loss measurements of different polystyrenes (fractions and blends) with different molecular weights (M n 2000–125000 g/mol) were carried out in the frequency range 10–2–106 Hz and the temperature range of the glass process (60°–135°C, depending on the molecular weight). The measurements of the pure fractions showed that the half-width of the glass relaxation process of the different polystyrenes can be correlated by a straight line, if they are plotted versus the relaxation frequency maxima of the glass process, regardless of the difference in both their molecular weight and glass transition temperature. Moreover, the fine structure of the shape of the glass process of polystyrenes with different molecular weights was found to be the same when the glass process appears at the same relaxation frequency range. The addition of oligostyrenes or low molecular <10% wt additives to the high molecular weight polystyrene did not influence the shape of the glass process. The calorimetric glass transition temperature of polystyrene was found to be only dependent on the number average molecular weight as well as on the number of end groups, but not on the molecular weight distribution. The obtained experimental results were correlated to develop a method for the estimation of the dielectric relaxation characteristics (relaxation frequency as well as the shape parameters) of the glass process of plasticized polystyrenes based on the calorimetric glass transition temperature. A method for the analysis of the dielectric relaxation curves of mixtures of label and polymer is suggested.  相似文献   

20.
The dynamics of glass forming liquids as the glass transition temperature (T(g)) is traversed has become of special interest because of the continuing question as to whether or not the dynamics diverge towards an ideal glass transition/Kauzmann temperature or if the apparent Vogel-Fulcher-Tammann (VFT) divergence is lost as one goes below the conventional T(g) but remains in equilibrium. Here we examine the response of a poly(vinyl acetate) PVAc polymer glass-former using both dielectric and mechanical methods in the vicinity of T(g). Isothermal measurements were performed to study the aging behavior of the PVAc and to assure that the equilibrium state was achieved for temperatures as much as 16 K below the calorimetric T(g). Surprisingly, we found that the mechanical response took much longer to age into its equilibrium than did the dielectric response. Also, the temperature dependence of the time-temperature shift factors obtained from the two methods is different and the dielectric response shows a turnover to an apparent Arrhenius behavior rather than a continuation of the VFT extrapolated divergence at the lowest temperatures tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号