首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quasi-elastic Neutron Scattering combined with Molecular Dynamics simulations have been carried out to gain further insight into the CO2 dynamics in LiY and NaY Faujasites. In both materials, it was pointed out that the transport diffusivity (DT) increases with the loading whereas the self diffusivity (DS) decreases. In addition, it was shown that LiY exhibits a significant slower CO2 self diffusivity process due to a strong interaction between the Li+ cation and the adsorbate molecules at the initial stage of diffusion. This result is consistent with higher simulated activation energy in this cation exchanged faujasite form. By contrast, the transport diffusivity is revealed to be slightly faster in LiY than in NaY.  相似文献   

2.
Nonclassical correlations known as entanglement, quantum discord, quantum deficit, measurement‐induced disturbance, quantum Maxwell's demon, etc., may provide novel insights into quantum‐information processing, quantum‐thermodynamics processes, open‐system dynamics, quantum molecular dynamics, and general quantum chemistry. We study a new effect of quantumness of correlations accompanying collision of two distinguishable quantum systems A and B, the latter being part of a larger (interacting) system B + D. In contrast to the common assumption of a classical environment or “demon” D, the quantum case exhibits striking new qualitative features. Here, in the context of incoherent inelastic neutron scattering from H‐atoms which create molecular excitations (vibration, rotation, translation), we report theoretical and experimental evidence of a new phenomenon: a considerably reduced effective mass of H, or equivalently, an anomalous momentum‐transfer deficit in the neutron‐H collision. These findings contradict conventional theoretical expectations even qualitatively, but find a straightforward interpretation in the new theoretical frame under consideration. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The effect of deactivating a fused silica surface by silylation with 1,1,3,3-tetraphenyl-1,3-dimethylilazane (TPDMDS), triphenylsilylamine (TPSA), and octamethylcyclotetrasiloxane (D4) and by polydimethylsiloxane degradation (PSD) is studied. Rehydrated, dried, and deactivated Cab-O-Sil M5 samples are used as model materials for 29Si CP-MAS NMR analysis. At about 350 °C, TPDMDS yelds mainly diphenylmethylsiloxysilane, dimethyldisiloxysilane, and triphenylsiloxysilane groups. TPSA yields phenyltrisiloxysilane, diphenyldisiloxysilane, and triphenylsiloxysilane groups. At 400°C, the products formed initially are eventually replaced by methyltrisiloxysilane or phenyltrisiloxysilane groups, while a substantial number of silanol groups still remains. The possible consequences for wettability are discussed. D4 reacts with Cab-O-Sil even at 200°C, but a large number of silanol groups remains. This number decreases gradually at higher temperatures and becomes negligible above 400°C. The formation of methyltrisiloxysilane groups, which starts at 425°C, is predominant at 490°C.  相似文献   

4.
The thermodynamic interactions between poly(4-tert-butyl styrene) [P(4tBS)] and 1,4-polyisoprene (PI; both hydrogenous) were obtained as functions of the temperature, PI molecular weight, and blend composition through the examination of miscible ternary blends of these two components with a common miscible labeled polymer [90% 1,2-deuterated polybutadiene (dPBD)] with small-angle neutron scattering. The thermodynamic interaction parameters between P(4tBS) and dPBD and between P(4tBS) and PI increased with increasing temperature and were consistent with lower critical solution temperature behavior. Although the binary blends of P(4tBS) and dPBD exhibited phase separation at elevated temperatures, the thermodynamic interaction parameters between P(4tBS) and PI remained large and negative and independent of the PI molecular weight. Finally, the thermodynamic interactions for PI and P(4tBS) depended strongly on the ratio of PI to P(4tBS) and were also sensitive to the amount of dPBD present in the ternary blend. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3204–3217, 2004  相似文献   

5.
Static and dynamic light-scattering measurements are made for colloidal-liquids and -gases of silica spheres (29 nm in diameter) in the exhaustively deionized aqueous suspension and in the presence of sodium chloride. Single broad peak is observed in the light-scattering curve and the liquid-like and gas-like distributions have been observed. Colloidal crystals are not formed at any sphere concentrations. The nearest-neighbored interparticle distances of colloidal liquids, l obs , agree excellently with the effective diameters of spheres (d eff ) including the electrical double layers in the effective soft-sphere model and also with the mean intersphere distances, l o , calculated from the sphere concentration, i.e., l obs d eff l o . This relation supports the importance of the electrostatic interparticle repulsive interaction. Two dynamic processes have been extracted separately from the time profiles of autocorrelation function of colloidal liquids. Decay curves of colloidal gases are characterized by the single translational diffusion coefficients, which are always lower than the calculation from the Stokes-Einstein equation using true diameter of spheres and increase as ionic concentration increases. These experimental results emphasize the importance of the expanded electrical double layers and the electrostatic intersphere repulsion on the structural and dynamic properties of the colloidal liquids and gases. Electronic Publication  相似文献   

6.
29Si and 13C CP-MAS NMR spectroscopy was used to follow the conversion of native silica to a p-chlorobenzamide bonded silica material. The benzamide bonded phase was prepared via a hydrosilation reaction of a hydride silica intermediate with p-chloro-N-allylbenzamide. Solid-state NMR was used to show the disappearance of reactive surface hydride species (MH) and to identify newly formed bonded chemical species on the silica surface. DRIFT spectroscopy, elemental analysis, and specific surface-area determinations (BET) of the prepared phases are also reported.  相似文献   

7.
The solid-state Nuclear Magnetic Resonance (NMR) was used to characterize surfaces of silica gels chemically modified by alkenyltrialkoxysilanes and trialkoxysilyl terminated 1,4-polyisoprenes. The formation of covalent bonds created between alkoxy functional groups from alkenyltrialkoxysilane or trialkoxysilyl-terminated 1,4-polyisoprene and silanol groups on silica was clearly demonstrated by means of 13C and 29Si CP/MAS NMR spectroscopy. Quantitative data, including calculation of the grafting yields in relation with the initial silanol concentrations, were also obtained by using solid-state 29Si-NMR leading to a final well-defined characterization of the silica surfaces. A relatively good agreement was noticed between the grafting yields calculated from 29Si-NMR spectra and those determined from other analytical techniques such as Wijs titration or elementary analysis. The reactivity of the various silica silanols towards each coupling agent was clearly characterized and estimated, as were the proportions of the various grafted structures formed at the silica surface. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 437–453, 1998  相似文献   

8.
The crosslinking of poly(vinyl alcohol) (PVA) with glutaraldehyde at 80 °C was characterized by viscosity and pulse field gradient (PFG) nuclear magnetic resonance (NMR) techniques. NMR signified an initial dormant period of approximately 6 hr, in which the self‐diffusion coefficient of PVA was found to be constant and independent of time. During the next 7 hr (the “primary” gel period), this induction period was succeeded by a fast decay of the self‐diffusion coefficient of rate (9.13 ± 0.45) × 10−5 sec−1 followed by a slower decay rate of (3.22 ± 0.30) × 10−5 sec−1 (the “secondary” gel period). The viscosity of the solution showed the same time behavior, i.e. an initial dormant period (∼ 6 hrs), followed by a fast increase of the viscosity for the next 7 –8 hr. During the “secondary” gel regime, the viscosity became too large to be reliably determined. However, within the time regime where both techniques produced reliable data, they gave identical information regarding the kinetics of the gel process, suggesting that PFG NMR enables in situ monitoring of gelation within porous materials (for instance sandstone). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Novel pulse sequences incorporating the double pulsed field gradient spin‐echo technique are presented that have particular use in identifying macromolecular bound water. The use of these sequences is illustrated using ribonuclease T1. Five amide protons cross‐relaxing with bound water protons were observed. Examination of the crystal structure revealed that all of these amide protons donate hydrogen bonds or are in close proximity to water molecules with very low temperature factors, indicating that these amide protons are highly correlated with the bound water molecules. This method rapidly provides reliable information for characterizing macromolecular bound water molecules. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Multiblock ethylene‐1‐butene copolymers (PEB‐n) with graded ethylene content (where n is the number of ethyl branches per 100 backbone carbons) represent efficient cold filter plugging point (CFPP) depressants for crude oils and middle distillates. The aggregation behavior and the interaction with wax molecules of a tetrablock PEB‐2.6/PEB‐6.0/PEB‐10.9/PEB‐13.2 and triblock PEB‐6.5/PEB‐8.9/PEB‐10.1 copolymers in decane solutions were investigated over a wide temperature range by combining different small‐angle neutron scattering techniques and optical microscopy. The experimental results revealed in the decrease of temperature formation and evolution of multisized structural levels showing a hierarchical organization on the length scale from 1 nm up to 10 μm. One‐dimensional polymer aggregates arising as initial structures associate and branch that lead to the occurrence of complex macroaggregates with diffusive interfaces and sizes of several microns. The one‐dimensional copolymer structure shows longitudinal density modulation and micellar‐like substructures in neat polymer solutions. When wax is added, this structure becomes more homogeneous in decrease of temperature as a consequence of the cocrystallization of wax and copolymer. The wax crystallization in board‐like objects of much smaller size than required by the CFPP criterion of oil and refinery industry (filter mesh size of 45 μm) is templated and controlled by the assembling features of the crystalline–amorphous PEB‐n multiblock copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

11.
The technique of small angle neutron scattering (SANS) has been used to study the conformation of polystyrene chains in dilute solution under a constant shear gradient. The experiments reveal a distinct anisotropy of the molecular dimensions with regard to the directions parallel and perpendicular to the flow direction on the 2D-multidetector. The deformation ratio of the single polymer chain (R 2/R iso 2 )–1 as a function of the reduced shear gradient=([] · · M w G)/RT shows a transition from the ideal 2-behaviour for dynamic infinitely flexible coils found at small gradients, to a behaviour with smaller increase at larger. These results are qualitatively consistent with the theory of Cerf for a polymer with finite internal viscosity in a shear gradient. At low(<1), a better agreement with the model of a free-draining coil (Rouse behaviour) than with the Zimm model is observed.  相似文献   

12.
The possibilities of inverse gas-solid chromatography (IGC) in obtaining chromatographic data on fumed silica were examined. Aerosil A-200, a fused silica model substrate in 29Si nuclear magnetic resonance analysis, was trimethylsilylated to different degrees. IGC was used to very reproducibly determine the free specific energies of adsorption of several functionalized probe solutes. Hydrogen bonding solutes have a free specific energy of adsorption that is at least about 50% higher than that of non-hydrogen bonding probe solutes. NMR was used in combination with elemental analysis to calculate surface concentrations of the different chemical surface structures. IGC data and surface concentrations were combined in order to determine the contribution of each type of surface structure to the total free specific adsorption energy. It could be concluded that residual silanols from the reaction of dihydroxydi-siloxysiloxane (Q2 groups) with trimethylchlorosilane possess a higher adsorption activity than the silanols initially present.  相似文献   

13.
 Silica gel samples, modified with 3-mercaptopropyltriethoxysilane, and their S–S-bridged samples have been prepared. In order to characterize the microstructure of the surface of these silica gel samples, Raman scattering and diffuse reflectance Fourier transform IR spectra of these samples have been examined by comparison with Raman spectra of various n-alkyl disulfides and their related silane polymers. The S–S and C–S stretch modes characteristic of the CH2SSCH2 segment, in addition to the SH and C–S stretch modes of the CH2SH segment, have been assigned for these silica gel samples. It has been found that, even on the surface of the silica gel, a specific conformer is stabilized about the CH2SSCH2 segment. Received: 1 May 2001 Accepted: 16 June 2001  相似文献   

14.
通过γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷(KH-560)偶联剂将具有抗菌功能的植物有效成分大黄素键合到硅胶上,制备了大黄素液相色谱键合固定相(EDSP)。采用元素分析、红外光谱和热分析对该固定相的结构进行表征。以嘧啶、嘌呤和核苷为溶质探针,并用ODS柱做参比,对固定相的色谱性能及保留机理进行了研究。研究结果表明,该固定相具有类似ODS的反相色谱性能,除疏水作用外,由于大黄素的大π共轭体系,为溶质提供了n-π和π-π作用位点;且两个邻位羟基和两个羰基的存在,能够与溶质之间发生氢键作用和偶极-偶极作用。与ODS柱相比,该固定相在极性化合物分离中占优势,且分析速度较快。此外,实验还发现,该固定相能较好地分离二甲苯同分异构体,预示着该固定相有一定的立体选择性分离能力。  相似文献   

15.
The 1H, 13C and 15N NMR studies have shown that the E and Z isomers of pyrrole‐2‐carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole‐2‐carbaldehyde oxime is stabilized by the N? H···N and N? H···O intramolecular hydrogen bonds, respectively. The N? H···N hydrogen bond in the E isomer causes the high‐frequency shift of the bridge proton signal by about 1 ppm and increase the 1J(N, H) coupling by ~3 Hz. The bridge proton shows further deshielding and higher increase of the 1J(N, H) coupling constant due to the strengthening of the N? H···O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by ~3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of 1H shielding and 1J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N? H···N and N? H···O hydrogen bondings to be estimated. The NBO analysis suggests that the N? H···N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N? H bond through the N? H···O hydrogen bond occurs in the Z isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This is the first report on the determination of nucleic acids based on the enhancement of resonance light scattering (RLS) of the anionic dye methyl blue (MB) in the presence of cetyltrimethylammonium bromide (CTMAB). In tris(hydroxymethyl) aminomethane buffer of pH 9.0, MB and nucleic acids react with CTMAB to form large particles of complex, which results in strong enhanced RLS signals characterized by three peaks at 334 nm, 393.5 nm and 548 nm. Mechanistic studies show that the enhanced RLS stems from the aggregation of MB on nucleic acids through the bridged and synergistic effect of CTMAB. With the enhanced RLS signals at the best wavelength at 334 nm, the enhanced RLS intensity is proportional to the concentration of nucleic acids in a wide range. The lowest limit of determination was 2.1 ng mL−1, three synthetic samples were analyzed satisfactorily.  相似文献   

17.
The structure of water solubilized by reverse aggregates of calcium bis(2-ethylhexyl) sulfosuccinate in deuterobenzene and toluene has been probed by Fourier transform-IR and 1H NMR spectroscopies. The νOD band of solubilized HOD (4% D2O in H2O) has been recorded as a function of the [water]/[surfactant] molar ratio, W/S. Curve fitting of this band showed the presence of a main peak at 2550 ± 13 cm−1 and a small one at 2405 ± 15 cm−1. As a function of increasing W/S, the frequency of the main peak decreases, its full width at half-height increases, and its area increases linearly. The 1H NMR chemical shift of solubilized H2O–D2O mixtures at W/S = 18.1 has been measured as a function of the deuterium content of the aqueous nanodroplet. These data were used to calculate the so-called “fractionation factor” of the aggregate-solubilized water, the value of which was found to be unity. The results of both techniques show that reverse aggregate-solubilized water, although different from bulk water, does not seem to coexist in “layers” of different degrees of structure, as suggested, for example by the two-state water-solubilization model. Received: 12 July 1999/Accepted: 30 August 1999  相似文献   

18.
By using a high-resolution solid state nuclear magnetic resonance spectrometer with 27Al and 29Si probes, the interaction between Mo species and HZSM-5 of frsol|Mo/HZSM-5 catalysts has been studied. The results show that there is a strong interaction between Mo species and HZSM-5 zeolite. The framework aluminum in the zeolite can be easily extracted by the introduction of Mo species. The extractability of framework aluminum by Mo species increases with increasing Mo loading and the calcination temperature. The extraction process leads to the formation of non-framework Al at first and then a new crystalline phase of Al2(MoO4)3. The dealumination of the catalyst having a Mo loading of 15% and had been calcined at 973 K is so severe that all the aluminum in the framework are extracted and no framework Al could be detected by 27Al MAS NMR. The catalyst, therefore, lost its catalytic activity for methane dehydrogenation and aromatization in the absence of oxygen. The Si/Al ratio measured from 29Si MAS NMR further confirms the dealumination process observed by 27Al MAS NMR. The MAS NMR results give us an evidence that Al2(MoO4)3 crystallites are much less active for the reaction.  相似文献   

19.
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMACONV) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMADVB). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional 1H and 13C NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMACONV), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMACONV and the DVB-containing (EPR-g-GMADVB) systems is also reported  相似文献   

20.
According to the 1H, 13C and 15N NMR spectroscopic data and DFT calculations, the E‐isomer of 1‐vinylpyrrole‐2‐carbaldehyde adopts preferable conformation with the anti‐orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn‐arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C? H···N intramolecular hydrogen bond between the α‐hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high‐frequency shift of the α‐hydrogen signal in 1H NMR (~0.5 ppm) and an increase in the corresponding one‐bond 13C–1H coupling constant (ca 4 Hz). In the Z‐isomer, the carbaldehyde oxime group turns to the anti‐position with respect to the pyrrole ring. The C? H···O intramolecular hydrogen bond between the H‐3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H‐3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one‐bond 13C–1H coupling constant for this proton increases by ~5 Hz. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号