首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persistent currents due to the Aharonov-Bohm flux, and the “spontaneous” persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity, which is further restored at the increasing field, however. The dynamics of the Aharonov-Bohm loop in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers.  相似文献   

3.
The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schrödinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this “magnetic Stark ladder” the energy separation is an integer multiple of hE/aB, with a the lattice parameter.  相似文献   

4.
This paper investigates the flux distributions of the electron photo-detached from H-ion localized in a gradient electric field. In contrast with the photodetachment in the uniform electric field [Phys. Rev. A 40(1989) 4983],where only two electron trajectories interfere at each given point on a detector, for the photodetachment in a gradient electric field, the electrons waves can travel along multiple paths from the negative ion to a given point on the detector plane, which makes the electron flux distributions on the detector plane become much complex. Using the semi-classical theory, we put forward a formula for calculating the electron flux. Our calculation results suggest that the electron flux distributions on a given detector plane is not only related to the propagation time of the detached electron, but also related to the detached electron's energy. With the increase of the detached electron's energy, the oscillating region in the electron flux distributions becomes enlarged and the oscillating structure in the flux distributions becomes much more complicated. This study will guide future experiment research on the photodetachment microscopy of the negative ions in the presence of non-uniform external fields.  相似文献   

5.
杜坚  李春光  秦芳 《物理学报》2009,58(5):3448-3455
研究了与铁磁/半导体/铁磁结构相关的双量子环自旋输运的规律,研究结果表明:总磁通为零条件下,铁磁电极磁化方向反平行时,双量子环与单量子环相比提高了自旋电子透射概率的平均值.铁磁电极磁化方向平行时,双量子环对提高自旋向下电子平均透射概率的效果更明显;双量子环受到Rashba自旋轨道耦合作用影响时,自旋电子的平均透射概率明显高于单量子环,即使再加上外加磁场的影响,透射概率较高这一特征依然存在;双量子环所含的δ势垒具有阻碍自旋电子输运的作用,随δ势垒强度Z的增大透射概率 关键词: 双量子环 Rashba自旋轨道耦合 透射概率 δ势垒')" href="#">δ势垒  相似文献   

6.
We study the energy spectrum and electronic properties of a two-dimensional (2D) spinless electron gas in a periodic magnetic field which has the symmetry of a triangular lattice. We show that the energy bands depend strongly on the value of the magnetic field. For large field the low-energy electrons are localized on closed rings where the magnetic field vanishes. This results in the appearance of persistent currents around these rings. We also calculate the intrinsic Hall conductivity, which is quantized when the Fermi level is in a gap.  相似文献   

7.
We studied the free precession of the nuclear magnetization of hyperpolarized 129Xe gas in external magnetic fields as low as B0 = 4.5 nT, using SQUIDs as magnetic flux detectors. The transverse relaxation was mainly caused by the restricted diffusion of 129Xe in the presence of ambient magnetic field gradients. Its pressure dependence was measured in the range from 30 mbar to 850 mbar and compared quantitatively to theory. Motional narrowing was observed at low pressure, yielding transverse relaxation times of up to 8000 s.  相似文献   

8.
Intensive currents of runaway electrons with energies of 50 keV or more have been observed at high pressures in a plasma betatron in addition to betatron accelerated electrons at lower pressures. The measurements agree with the assumption that these electrons are accelerated in the external field while they are guided by the self magnetic field of the plasma current. Macroscopic instabilities and plasma waves can be excluded as accelerating mechanisms. The strong dependence of the runaway flux upon the gas pressure and the electric field can be explained by collisions between electrons and the other plasma particles. Furthermore the influence of the external magnetic field on the movement of the plasma current to the torus wall was investigated. A maximum circulating runaway current of more than 2000 A (Xenon) appeared when the plasma current was kept approximately in balance by the external magnetic field.  相似文献   

9.
We present a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schr ödinger equation. We show that in the impulsive limit, the Coulomb-Volkov distorted wave theory reproduces the exact solution. The validity of the strong field approximation is probed both classically and quantum mechanically. We found that classical mechanics describes the proper quantum momentum distributions of the ejected electrons right after a sudden momentum transfer, however pronounced the differences at latter stages that arise during the subsequent electron-nucleus interaction. Although the classical calculations reproduce the quantum momentum distributions, it fails to describe properly the angular momentum distributions, even in the limit of strong fields. The origin of this failure can be attributed to the difference between quantum and classical initial spatial distributions.  相似文献   

10.
唐田田  张朝民  张敏 《物理学报》2013,62(12):123201-123201
利用半经典开轨道理论, 研究了磁场和金属面附近氢负离子的剥离电子通量分布, 并揭示了电子通量分布中的振荡结构与经典轨道之间的关系.固定离子到金属面的距离, 研究了不同的磁场强度对电子通量分布的影响. 结果表明, 由于与电子通量分布相联系的剥离电子的经典轨迹增加, 随着磁场强度的增加, 通量分布变得复杂. 此外发现剥离电子的能量变化也会影响电子通量分布. 因此可以通过改变磁场强度大小和剥离电子的能量来调控剥离电子通量分布和干涉图样. 研究结果对于理解负离子在外场、表面附近的电子流通量和剥离电子干涉图样问题以及将来实验研究负离子的光剥离显微问题都可以提供一定的参考. 关键词: 开轨道理论 电子通量 金属面 磁场  相似文献   

11.
The anomalous particle transport in a tokamak core is believed to be linked to the advection of magnetically trapped electrons alone, owing to the passing electrons maintaining a thermal equilibrium along the field lines. Surprisingly, in nonlinear numerical studies, the radial flux of passing electrons rivals that of the trapped ones. The strong interaction of passing electrons and electric fluctuations is mediated by long tails of the modes along the magnetic field, which are generated by the passing electrons in the first place.  相似文献   

12.
We show, in a framework of a classical nonequilibrium model, that rotational angles of electrons moving in two dimensions (2D) in a perpendicular magnetic field can be synchronized by an external microwave field whose frequency is close to the Larmor frequency. The synchronization eliminates collisions between electrons and thus creates a regime with zero diffusion corresponding to the zero-resistance states observed in experiments with high mobility 2D electron gas (2DEG). For long range Coulomb interactions electrons form a rotating hexagonal Wigner crystal. Possible relevance of this effect of synchronization-induced self-assembly for planetary rings is discussed.  相似文献   

13.
An annular Malmberg-Penning trap confining a non-neutral plasma of electrons has been operated with an azimuthal magnetic field to create drifts orthogonal to the magnetic flux surfaces. An applied electric field and collisions with added helium drive transport by electric mobility. The measured confinement times have the expected neoclassical magnetic-field dependence, are approximately 0.8 of the value based upon the neoclassical mobility, and differ from the classical value by more than a factor of 3 at the highest value of azimuthal field.  相似文献   

14.
For the first time, the CuFeO2 single crystal has been studied by 63,65Cu nuclear magnetic resonance (NMR). The measurements have been carried out in the temperature range of T = 100?350 K in the magnetic field H = 117 kOe applied along different crystallographic directions. The components of the electric field gradient tensor and the hyperfine coupling constants are determined. It is shown that electrons of copper 4s and 3d orbitals are involved in the spin polarization transfer Fe → Cu. The occupancies of these orbitals are estimated.  相似文献   

15.
A nonperturbative method for calculating persistent currents in molecules and nanoscopic quantum rings is presented. Starting from the extended Hubbard model on a ring threaded by an Aharonov-Bohm flux, a feedback term through which the current can generate magnetic flux is added. Another extension of the Hamiltonian describes the energy stored in the internally generated field. This model is evaluated using exact diagonalization and an iterative scheme to find the minima of the free energy with respect to the current. The magnetic properties due to electron delocalization of conjugated hydrocarbons like benzene [magnetic anisotropy, magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)] — that have become important criteria for aromaticity — can be examined using this model. A possible novel mechanism for a permanent orbital magnetic moment in quantum rings analogous to the one in π-SQUIDs is found in the framework of the proposed model. The quantum rings must satisfy two conditions to exhibit this kind of permanent orbital magnetic moment: a negative Drude weight and an inductivity above the critical level.  相似文献   

16.
Ab initio calculations have been carried out to study the magnetic dipole and electric quadrupole hyperfine structure constants of 205Pb+. Many-body effects have been considered to all orders using the relativistic coupled-cluster theory in the singles, doubles and partial triples approximation. The trends of these effects are found to be different from atomic systems that have been studied earlier.  相似文献   

17.
Optical and electrical measurements on green and blue organic light-emitting devices (OLEDs) with and without hole-blocking layers (HBLs) were performed, and the luminescence mechanisms of green and blue OLEDs utilizing HBLs were investigated by using energy band diagrams and carrier density distributions. The dependence of the electroluminescence efficiencies on the existence of HBLs was described on the basis of a luminescence mechanism. The density distributions of the electrons and the holes in OLEDs under applied electric fields were estimated from the energy band diagrams, taking into account the electronic parameters and the layer thicknesses. The luminescence efficiencies and the color chromaticities were significantly affected by the existence of the HBLs. These analyses can help improve understanding of the luminescence mechanisms at play in and the electroluminescence efficiencies of green and blue OLEDs with HBLs, and the present results provide important information on the optical properties for enhancing the efficiencies of OLEDs operating in the green and the blue regions of the spectra.  相似文献   

18.
In Rydberg atoms subject to static and harmonic collinear electric fields, intrashell transition can be induced by the first order perturbation from a small perpendicular electric or magnetic field, or by effects of the second order in the major fields. Both mechanisms lead to resonances that are suppressed under certain conditions, and high-frequency interference oscillations in case of non-adiabatic field switching. Recent measurements of microwave ionization signals show very rich and fascinating structures similar to the ones predicted for intrashell mixing. We show that the observed ionization structures may be explained by diabatic electric-field ionization and the consistent use of perturbation theory for intrashell mixing. In particular, the dominant oscillation frequency is successfully interpreted in terms of interference between first and second order transition amplitudes. New predictions are provided. The present approach gives a comprehensive picture of intrashell transitions, which may be tested in future experiments designed to observe such transitions directly. Received 2 May 2002 / Received in final form 23 September 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: Valentin.Ostrovsky@pobox.spbu.ru RID="b" ID="b"e-mail: horsdal@ifa.au.dk  相似文献   

19.
A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanoparticles, electron energy balance, and Poisson's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.  相似文献   

20.
We present numerical investigations of the transmission properties of electrons in a normal quantum wire tangentially attached to a superconductor ring threaded by magnetic flux. A point scatterer with a δ -function potential is placed at node to model scattering effect. We find that the transmission characteristics of electrons in this structure strongly depend on the normal or superconducting state of the ring. The transmission probability as a function of the energy of incident electrons, in the case of a superconductor ring threaded by one quantum magnetic flux, emerges one deep dip, imposed upon the first broad bump in spectrum. This intrinsic conductance dip originates from the superconductor state of the ring. When increasing the magnetic flux from one quantum magnetic flux to two, the spectrum shifts toward higher energy region in the whole. This conductance dip accordingly shifts and appears in the second bump. In the presence of a point-scatterer at the node, the spectrum is substantially modified. Based on the condition of the formation of the standing wave functions in the ring and the broken of the time-reserve symmetry of Schr?dinger equation after switching magnetic flux, the characteristics of transmission of electrons in this structure can be well understood. Received 6 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号