首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[structure: see text] Four deoxyxylulose phosphate (DXP) analogues were synthesized and evaluated as substrates/inhibitors for methylerythritol phosphate (MEP) synthase. In analogues CF(3)-DXP (1), CF(2)-DXP (2), and CF-DXP (3), the three methyl hydrogens at C1 of DXP were sequentially replaced by fluorine. In the fourth analogue, Et-DXP (4), the methyl group in DXP was replaced by an ethyl moiety. Analogues 1, 2, and 4 were not substrates for MEP synthase under normal catalytic conditions and were instead modest inhibitors with IC(50) values of 2.0, 3.4, and 6.2 mM, respectively. In contrast, 3 was a good substrate (k(cat) = 38 s(-)(1), K(m) = 227 muM) with a turnover rate similar to that of the natural substrate. These results are consistent with a retro-aldol/aldol mechanism rather than an alpha-ketol rearrangement for the enzyme-catalyzed conversion of DXP to MEP.  相似文献   

2.
[reaction: see text] 1-deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase is a NADPH-dependent enzyme catalyzing the conversion of DXP to methyl-D-erythritol 4-phosphate (MEP). In this study, each of the hydroxyl groups in DXP and one of its C-1 hydrogen atoms, were separately replaced with a fluorine atom and the effect of the substitution on the catalytic turnover was examined. It was found that the 1-fluoro-DXP is a poor substrate, while both 3- and 4-fluoro-DXP behave as noncompetitive inhibitors.  相似文献   

3.
D ‐Glyceraldehyde 3‐phosphate (=D ‐GAP; 2 ) was prepared by an improved chemical method (Scheme 2), and it was then employed to synthesize 1‐deoxy‐D ‐xylulose 5‐phosphate (=DXP; 3 ) which is enzymatically one of the key intermediates in the MEP ( 4 ) terpenoid biosynthetic pathway (Scheme 1). The recombinant DXP synthase of Rhodobacter capsulatus was used to catalyze the condensation of D ‐glyceraldehyde 3‐phosphate ( 2 ) and pyruvate (=2‐oxopropanoate; 1 ) to produce the sugar phosphate 3 (Scheme 2). The simple two‐step chemoenzymatic route described affords DXP ( 3 ) with more than 70% overall yield and higher than 95% purity. The procedure may also be used for the synthesis of isotope‐labeled DXP ( 3 ) by using isotope‐labeled pyruvate.  相似文献   

4.
2‐Amino‐6‐methyl‐5‐(pyridin‐4‐ylsulfanyl)‐3H‐quinazolin‐4‐one ( 3 , AG337) a lipophilic thymidylate synthase inhibitor, is currently in clinical trials as an antitumor agent. On the basis of the crystal structure of 3 and the classical inhibitor 10‐propargyl‐5,8‐dideazafolic acid ( 1 , PDDF) with thymidylate synthase, we designed and synthesized a series of nonclassical 2‐amino‐6‐substituted‐3H‐quinazolin‐4‐ones 4–13 , with a variety of electron withdrawing groups in the side chain (with the exception of compound 4 ). Molecular modeling indicates that these reversed bridge (N9–C10) 6‐substituted analogues orient their side chain C10‐substituent such that it lies between that of 1 and 3 . These compounds were obtained by reduc tive amination of 6‐aminoquinazoline 16 and the appropriate aryl aldehyde 17 or aryl ketone 18 . For ana logues 11–13 , the yield depended on the substitutents on the aryl ketone 18 (comparison of 11 and 13 ). With the exception of analogue 13 , all the compounds in the series were poor inhibitors of thymidylate synthase from Lactobacillus casei, Pneumocystis carinii and human sources.  相似文献   

5.
Three analogues of RA-VII (1), an antitumor bicyclic hexapeptide from Rubia plants, were synthesized. Three analogues, [Gly-1]RA-VII (4), [Gly-2]RA-VII (5), and [Gly-4]RA-VII (6), in which one of the three alanine residues in 1 was replaced by a glycine residue, were prepared by linking of the cycloisodityrosine unit, obtained by degradation of 1, to three different glycine-containing tetrapeptides followed by macrocyclization. Of these three analogues, analogue 4 showed the highest cytotoxic activity. The NMR study revealed that in solution the conformer structures and their ratios of analogue 4 were very similar to those of natural peptide 1, suggesting that the methyl groups at Ala-2 and Ala-4 should be essential for producing the bioactive conformation, whereas that at D-Ala-1 is not essential.  相似文献   

6.
Classical inhibitors of thymidylate synthase such as Nl0-propargyl-5,8-dideazafolic acid (1), N-(5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl)-L-glutamic acid (ZD1694, 2) and N-[2-amino-4-oxo-3,4-dihydro(pyrrolo[2,3-d]pyrintidin-5-yl)ethylbenzoyl]-L-glutamic acid (LY231514, 3) while potent, suffer from a number of potential disadvantages, such as impaired uptake due to an alteration of the active transport system required for their cellular uptake, as well as formation of long acting, non-effluxing polyglutamates via the action of folylpolyglutamate synthetase, which are responsible for toxicity. To overcome some of the disadvantages of classical inhibitors, there has been considerable interest in the synthesis and evaluation of nonclassical thymidylate synthase inhibitors, which could enter cells via passive diffusion. In an attempt to elucidate the role of saturation of the B-ring of non-classical, quinazoline antifolate inhibitors of thymidylate synthase, analogues 7-17 were designed. Analogues 13-17 which contain a methyl group at the 7-position, were synthesized in an attempt to align the methyl group in an orientation which allows interaction with tryptophan-80 in the active site of thymidylate synthase. The synthesis of these analogues was achieved via the reaction of guanidine with the appropriately substituted cyclohexanone-ketoester. These ketoesters were in turn synthesized via a Michael addition of the appropriate thiophenol with 2-carbethoxycyclohexen-1-one or 5-methyl-2-carbethoxycyclo-hexen-1-one to afford a mixture of diastereomers. The most inhibitory compound was the 3,4-dichloro, 7-methyl derivative 17 which inhibited the Escherichia coli and Pneumocystis carinii thymidylate syntheses 50% at 5 × 105 M. Our results confirm the importance of the 7-CH3 group and electron withdrawing groups on the aromatic side chain for thymidylate synthase inhibition.  相似文献   

7.
A new and stereoselective strategy is developed to synthesize an appropriate template 9 to obtain C-6 homologues of 1-deoxyazasugars such as 1-deoxy-D-galactohomonojirimycin (5), 1-deoxy-4-hydroxymethyl-D-glucohomonojirimycin (6), and their enantiomers. The template 9 is also used to obtain neutral nonbasic pseudo-glyconolactam (8), C-4 amino, and methyl analogues of 1-deoxy-homonojirimycin as new analogues of 1-deoxyhomoazasugars. Compound 5 is found to be a potent and specific inhibitor to alpha-galactosidase (Ki = 1.7 microM). Similarly compounds 6 (Ki= 28 microM), ent-5 (Ki= 129 microM), and ent-6 (Ki= 12 microM) exhibited specific inhibition of beta-glucosidase.  相似文献   

8.
Five new firefly luciferin ( 1 ) analogues were synthesized and their light emission properties were examined. Modifications of the thiazoline moiety in 1 were employed to produce analogues containing acyclic amino acid side chains ( 2 – 4 ) and heterocyclic rings derived from amino acids ( 5 and 6 ) linked to the benzothiazole moiety. Although methyl esters of all of the synthetic derivatives exhibited chemiluminescence activity, only carboluciferin ( 6 ), possessing a pyrroline‐substituted benzothiazole structure, had bioluminescence (BL) activity (λmax=547 nm). Results of bioluminescence studies with AMP‐carboluciferin (AMP=adenosine monophosphate) and AMP‐firefly luciferin showed that the nature of the thiazoline mimicking moiety affected the adenylation step of the luciferin–luciferase reaction required for production of potent BL. In addition, BL of 6 in living mice differed from that of 1 in that its luminescence decay rate was slower.  相似文献   

9.
A series of ten novel 2‐amino‐4‐oxo‐5‐[(substitutedbenzyl)thio]pyrrolo[2,3‐d]pyrimidines 2‐11 were synthesized as potential inhibitors of thymidylate synthase and as antitumor agents. The analogues contain various electron withdrawing and electron donating substituents on the benzylsulfanyl ring of the side chains and were synthesized from the key intermediate 2‐amino‐4‐oxo‐6‐methylpyrrolo[2,3‐d]pyrimidine, 14 . Appropriately substituted benzyl mercaptans were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against human, Escherichia coli and Toxoplasma gondii thymidylate synthase and against human, Escherichia coli and Toxoplasma gondii dihydrofolate reductase. The most potent inhibitor, ( 6 ) which has a 4′‐methoxy substituent on the side chain, has an IC50=25 μM against human thymidylate synthase. Contrary to analogues of general structure 1 , electron donating or electron withdrawing substituents on the side chain of 2‐11 had little or no influence on the human thymidylate synthase inhibitory activity.  相似文献   

10.
Thymidine and uridine were modified at the C2' and C5' ribose positions to form amine analogues of the nucleosides (1 and 4). Direct amination with NaBH(OAc)3 in DCE with the appropriate aldehydes yielded 1-{5-[(bis(pyridin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L1), 1-{5-[(bis(quinolin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L2), and 1-[3-(bis(pyridin-2-ylmethyl)amino)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-pyrimidine-2,4-dione (L5), while standard coupling procedures of 1 and 4 with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (2) and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid (3) in the presence of HOBT-EDCI in DMF provided a second novel series of bifunctional chelators: 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L3), 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L4), 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L6), and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L7). The rhenium tricarbonyl complexes of L1-L4, L6, and L7, [Re(CO)3(LX)]Br (X=1-4, 6, 7: compounds 5-10, respectively), have been prepared by reacting the appropriate ligand with [NEt4][Re(CO)3Br3] in methanol. The ligands and their rhenium complexes were obtained in good yields and characterized by common spectroscopic techniques including 1D and 2D NMR, HRMS, IR, cyclic voltammetry, UV, and luminescence spectroscopy and X-ray crystallography. The crystal structure of complex 6.0.5NaPF6 displays a facial geometry of the carbonyl ligands. The nitrogen donors of the tridentate ligand complete the distorted octahedral spheres of the complex. Crystal data: monoclinic, C2, a = 24.618(3) A, b = 11.4787(11) A, c = 15.5902(15) A, beta = 112.422(4) degrees , Z = 4, D(calc) = 1.562 g/cm3.  相似文献   

11.
The efficient syntheses of two new types of conformationally constrained S‐[2‐[(1‐iminoethyl)amino]ethyl]homocysteine derivatives, 1‐amino‐3‐[2[(1‐iminoethyl)amino]ethylthio]cyclobutane carboxylic Acid ( 5 ) and (4S)‐4‐[[2‐[(1‐Iminoethyl)amino]ethyl]thio]‐L‐proline ( 6 ), are reported. These molecules represent the first attempts to probe conformational constraint near the α‐amino acid moiety of known homocysteine‐based inhibitors of nitric oxide synthase. Targets 5 and 6 were evaluated as potential inhibitors of the three human isoforms of nitric oxide synthase. © 2002 John Wiley & Sons, Inc. Heteroatom Chem 13:77–83, 2002; DOI 10.1002/hc.1109  相似文献   

12.
The synthesis of six analogues of the potent thymidylate synthase (TS) inhibitor N -[4-[ N -[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinoyl)-methyl]- N -prop-2-ynylamino]benzoyl]- L -glutamic acid 2 is described in which the glutamic acid residue has been replaced by DL -aminophosphonic acids. New antifolates were tested as inhibitors of TS isolated from mouse L1210 leukemic cells as well as inhibitors of growth mouse leukemic L5178Y cells. In general these modifications result in compounds that are considerably less potent than 2 as TS inhibitors with K i 's 0.17-1.10 w M. Very poor solubility in water limited their proper assay of growth cells inhibition.  相似文献   

13.
Aromatic analogues of chorismate were synthesised as potential inhibitors of anthranilate synthase. Molecular modelling using GOLD2.1 showed that these analogues docked into the active site of Serratia marcescens anthranilate synthase in the same conformation as chorismate. Most compounds were found to be micromolar inhibitors of S. marcescens anthranilate synthase. The most potent analogue, 3-(1-carboxy-ethoxy)-4-hydroxybenzoate (K(I) 3 microM), included a lactyl ether side chain. This appears to be a good replacement for the enol-pyruvyl side chain of chorismate.  相似文献   

14.
A new route to compound 3 (4-[N-(6RS)-2-methyl-4-oxo-3,4,7,8-tetrahydro-6H-cyclopenta[g]quinazolin-6-yl]-N-(prop-2-ynyl)amino]benzoic acid), a crucial intermediate for the synthesis of potent inhibitors of thymidylate synthase (TS), is described. In this sequence the C6-N10 bond was constructed first, by the reductive amination of 5-acetamido-6-bromoindan-1-one 6 with tert-butyl 4-aminobenzoate, then the cyclopenta[g]quinazolinone ring was formed and the propargyl group was introduced on the N10-position using the (propargyl)Co2(CO)6+ complex as the electrophilic propargyl reagent.  相似文献   

15.
Efficient syntheses of the non-mevalonate pathway intermediates 2-C-methylerythritol 4-phosphate (MEP) and 2-C-methylerythritol 2,4-cyclodiphosphate (ME-2,4-cycloPP), as well as the parent tetrol 2-C-methylerythritol, in enantiopure form from (2S,4R)-cis-2-phenyl-4-tert-butyldimethylsilyloxy-1,3-dioxan-5-one are reported. The 2S configuration of the C-methyl group was installed by highly axial-face selective addition of CH3MgBr (20:1) to the chiral dioxanone carbonyl group. Primary selective mono-phosphorylation and 2,4-bis-phosphorylation, followed by desilation and hydrogenolysis to the free mono- and diphosphates, and, in the latter case, cyclization to form the eight-membered phosphoryl anhydride, afforded MEP and ME-2,4-cycloPP in good yields. The C2 epimeric analogues, 2-C-methylthreitol and its 4-phosphate, were accessed by LiAlH4 reduction of the cis,cis epoxide of (2S,4R)-4-tert-butyldimethylsilyloxymethyl-5-methylene-2-phenyl-1,3-dioxane, primary-selective phosphorylation, and cleavage of the silyl, benzylidene, and benzyl protecting groups. Regioselective cleavage of the acetal ring of 1,3-benzylidene 2-C-methylerythritol silyl ether by ozonolysis afforded a 1,2,3-triol 3-monobenzoate intermediate that was converted to the novel amino sugar, 1-amino-1-deoxy-2-C-methylerythritol.  相似文献   

16.
Thiazole synthase (ThiG) catalyzes an Amadori-type rearrangement of 1-deoxy-d-xylulose-5-phosphate (DXP) via an imine intermediate. In support of this, we have demonstrated enzyme-catalyzed exchange of the C2 carbonyl of DXP. Borohydride reduction of the enzyme DXP imine followed by top-down mass spectrometric analysis localized the imine to lysine 96. On the basis of these observations, a new mechanism for the biosynthesis of the thiazole phosphate moiety of thiamin pyrophosphate in Bacillus subtilis is proposed. This mechanism involves the generation of a ketone at C3 of DXP by an Amadori-type rearrangement of the imine followed by nucleophillic addition of the sulfur carrier protein (ThiS-thiocarboxylate) to this carbonyl group.  相似文献   

17.
[reaction: see text] A practical synthesis of the potent class I alpha-mannosidase inhibitor kifunensine (1) beginning from the inexpensive and readily available starting material L-ascorbic acid (15) is described. The protected amino-alcohol ((2R,3R,4R,5R)-5-amino-2,3:4,6-diisopropylidenedioxyhexanol, 11) served as a key intermediate from which several N-1 substituted kifunensine analogues (including N-methyl, N-cyclohexyl, and N-bis(hydroxymethyl)methyl) and 2-desoxakifunensine analogues (including N-H and N-methyl) were prepared and screened for inhibition of human endoplasmic reticulum alpha-mannosidase I (ER Man I) and mouse Golgi alpha-mannosidase IA (Golgi Man IA). In addition, several pseudodisaccharide kifunensine analogues in which a mannose residue was tethered to N-1 of kifunensine via a two-, three-, or four-carbon linker and an affinity-bound kifunensine analogue were also prepared and evaluated for biological activity. While the synthesized N-1 kifunesine analogues were found to be less potent inhibitors of Class I alpha-mannosidases than kifuensine itself, the bis(hydroxymethyl)methylkifunensine analogue 6 was shown to selectively inhibit ER Man I over Golgi Man IA.  相似文献   

18.
Anthranilate synthase catalyses the conversion of chorismate to anthranilate, a key step in tryptophan biosynthesis. A series of 3-(1-carboxy-ethoxy) benzoic acids were synthesised as chorismate analogues, with varying functionality at C-4, the position of the departing hydroxyl group in chorismate. Most of the compounds were moderate inhibitors of anthranilate synthase, with inhibition constants between 20-30 microM. The exception was 3-(1-carboxy-ethoxy) benzoic acid, (C-4 = H), for which K(I)= 2.4 microM. These results suggest that a hydrogen bonding interaction with the active site general acid (Glu309) is less important than previously assumed for inhibition of the enzyme by these aromatic chorismate analogues.  相似文献   

19.
Several analogues of a hypothetical intermediate in the reaction catalyzed by lumazine synthase were synthesized and tested as inhibitors of both Bacillus subtilis lumazine synthase and Escherichia coli riboflavin synthase. The new compounds were designed by replacement of a two-carbon fragment of several 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors with an amide linkage that was envisioned as an analogue of a Schiff base moiety of a hypothetical intermediate in the enzyme-catalyzed reaction. The incorporation of the amide group led to an unexpected reversal in selectivity for inhibition of lumazine synthase vs riboflavin synthase. Whereas the parent 5-phosphonoalkyl-6-D-ribitylaminopyrimidinediones were lumazine synthase inhibitors and did not inhibit riboflavin synthase, the amide-containing derivatives inhibited riboflavin synthase and were only very weak or inactive as lumazine synthase inhibitors. Molecular modeling of inhibitor-lumazine synthase complexes did not reveal a structural basis for these unexpected findings. However, molecular modeling of one of the inhibitors with E. coli riboflavin synthase demonstrated that the active site of the enzyme could readily accommodate two ligand molecules.  相似文献   

20.
Nine novel nonclassical 2,4‐diamino‐6‐methyl‐5‐mioarylsubstituted‐ 7H ‐pyrrolo[2,3‐d]pyrimidines 2‐10 were synthesized as potential inhibitors of dihydrofolate reductase and as antitumor agents. The analogues contain various electron donating and electron withdrawing substituents on the phenylsulfanyl ring of the side chains and were synthesized from the key intermediate 2,6‐diamino‐6‐methyl‐7H‐pyrrolo[2,3‐d]‐pyrimidine, 14 . Compound 14 , was in turn obtained by chlorination of 4‐position of 2‐amino‐6‐methylpyrrolo[2,3‐d]pyrimidin‐4(3H)‐one, 16 followed by displacement with ammonia. Appropriately substituted phenyl thiols were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against rat liver, rat‐derived Pneumocystis, Mycobacterium avium and Toxoplasma gondii dihydrofolate reductase. The most potent and selective inhibitor, (2) has a 1‐naphthyl side chain. In this series of compounds electron‐withdrawing and bulky substituents in the side chain afford marginally active dihydrofolate reductase inhibitors. The single atom sulfur bridge in the side chain of these compounds is not conducive to potent dihydrofolate reductase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号