首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
司红颖  陈绍春 《计算数学》2014,36(3):316-324
本文考虑了二阶半线性椭圆问题的Petrov-Galerkin逼近格式,用双二次多项式空间作为形函数空间,用双线性多项式空间作为试探函数空间,证明了此逼近格式与标准的二次有限元逼近格式有同样的收敛阶.并且根据插值算子的逼近性质,进一步证明了半线性有限元解的亏量迭代序列收敛到Petrov-Galerkin解.  相似文献   

2.
A brief survey is given to show that harmonic averages enter in a natural way in the numerical solution of various variable coefficient problems, such as in elliptic and transport equations, also of singular perturbation types. Local Green’s functions used as test functions in the Petrov-Galerkin finite element method combined with harmonic averages can be very efficient and are related to exact difference schemes.  相似文献   

3.
1.IntroductionFranketc.of.[l]establishedtheiterateddefectcorrectionschemeforfiniteelemelltofellipticboundaryproblems.FOrlinearellipticboundaryvalueproblem[2--5]havediscllssedtheefficiencyoftheschemebyusillgsuperconvergenceandasymptoticexpansion"lidertheco…  相似文献   

4.
1. IntroductionThe pmpme of tabs Paper is to show that the ~ardson edrapolation can be used toenhance the nUmerical solutions generated by a cab of Petrov-Gaierkin lhate element methodsfor the nonlinear VOlterra integrO-chrential equation (VIDE):where j = j(t,y): I x R --+ R and k = k(t,8,g): D x R - R (with D:= {(t,8): 0 S & S t ST}) denote given hmctions.Throughout tab paperl it will always be assumed that the problem (1.1) possesses a piquesolution y E C'(I), namely, the given hmc…  相似文献   

5.
In this paper, we propose three gradient recovery schemes of higher order for the linear interpolation. The first one is a weighted averaging method based on the gradients of the linear interpolation on the uniform mesh, the second is a geometric averaging method constructed from the gradients of two cubic interpolation on macro element, and the last one is a local least square method on the nodal patch with cubic polynomials. We prove that these schemes can approximate the gradient of the exact solution on the symmetry points with fourth order. In particular, for the uniform mesh, we show that these three schemes are the same on the considered points. The last scheme is more robust in general meshes. Consequently, we obtain the superconvergence results of the recovered gradient by using the aforementioned results and the supercloseness between the finite element solution and the linear interpolation of the exact solution. Finally, we provide several numerical experiments to illustrate the theoretical results.  相似文献   

6.
多孔介质中可压缩可混溶驱动问题的有限体积元法   总被引:2,自引:0,他引:2  
有界区域上多孔介质中可压缩可混溶驱动问题由两个非线性抛物型方程耦合而成:压力方程和饱和度方程均是抛物型方程.运用有限体积元法对两个方程进行数值分析,给出了全离散有限体积元格式,并通过详细的理论分析,得到了近似解与原问题真解的最优H^1模误差估计。  相似文献   

7.
In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent papers [6] and [9] by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing technique, we obtain a global superconvergence of the O(h 2r )-convergence rate in the piecewise-polynomial space of degree not exceeding (r–1). As a by-product of our results, all these higher order numerical methods can also provide an a posteriori error estimator, which gives critical and useful information in the code development.  相似文献   

8.
The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.  相似文献   

9.
This paper gives the detailed numerical analysis of mixed finite element method for fractional Navier-Stokes equations.The proposed method is based on the mixed finite element method in space and a finite difference scheme in time.The stability analyses of semi-discretization scheme and fully discrete scheme are discussed in detail.Furthermore,We give the convergence analysis for both semidiscrete and flly discrete schemes and then prove that the numerical solution converges the exact one with order O(h2+k),where h and k:respectively denote the space step size and the time step size.Finally,numerical examples are presented to demonstrate the effectiveness of our numerical methods.  相似文献   

10.
HIGH ACCURACY ANALYSIS OF THE WILSON ELEMENT   总被引:4,自引:0,他引:4  
1.IntroductionItiswellknownthatsuperconvergenceestimatesanderrorexpansionsfortheconformingfiniteelementsarewellstudiedinmanypapers.Wereferto[16]forasurveyonvariousresultsofsuperconvergenceandto[10]forafundamentalworkonasymptoticerrorexpansionsandto[1]--[3]forsometechniquesonhighaccuracyanalysis.However,forthenonconformingelements,duetothereducedcontinuityoftrialandtestfunctions,itbecomesmoredifficulttodiscusssuperconvergencepropertiesandrelatedasymptoticerrorexpansions.Naturally,peoplewanttoas…  相似文献   

11.
We shed light on the relation between the discrete adjoints of multistep backward differentiation formula (BDF) methods and the solution of the adjoint differential equation. To this end, we develop a functional-analytic framework based on a constrained variational problem and introduce the notion of weak adjoint solutions of ordinary differential equations. We devise a Petrov-Galerkin finite element (FE) interpretation of the BDF method and its discrete adjoint scheme obtained by reverse internal numerical differentiation. We show how the FE approximation of the weak adjoint is computed by the discrete adjoint scheme and prove its convergence in the space of normalized functions of bounded variation. We also show convergence of the discrete adjoints to the classical adjoints on the inner time interval. Finally, we give numerical results for non-adaptive and fully adaptive BDF schemes. The presented framework opens the way to carry over techniques on global error estimation from FE methods to BDF methods.  相似文献   

12.
Currently used finite volume methods are essentially low order methods. In this paper, we present a systematic way to derive higher order finite volume schemes from higher order mixed finite element methods. Mostly for convenience but sometimes from necessity, our procedure starts from the hybridization of the mixed method. It then approximates the inner product of vector functions by an appropriate, critical quadrature rule; this allows the elimination of the flux and Lagrange multiplier parameters so as to obtain equations in the scalar variable, which will define the finite volume method. Following this derivation with different mixed finite element spaces leads to a variety of finite volume schemes. In particular, we restrict ourselves to finite volume methods posed over rectangular partitions and begin by studying an efficient second-order finite volume method based on the Brezzi–Douglas–Fortin–Marini space of index two. Then, we present a general global analysis of the difference between the solution of the underlying mixed finite element method and its related finite volume method. Then, we derive finite volume methods of all orders from the Raviart–Thomas two-dimensional rectangular elements; we also find finite volume methods to associate with BDFM 2 three-dimensional rectangles. In each case, we obtain optimal error estimates for both the scalar variable and the recovered flux.  相似文献   

13.
The asymptotic correction technique of Paine, de Hoog and Anderssen can dramatically improve the accuracy of finite difference or finite element eigenvalues at negligible extra cost if closed form expressions are available for the errors in a simpler related problem. This paper gives closed form expressions for the errors in the eigenvalues of certain Sturm–Liouville problems obtained by various methods, thereby increasing the range of problems for which asymptotic correction can achieve maximum efficiency. It also investigates implementation of the method for more general problems.  相似文献   

14.
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Nonstandard finite differences (NSFDs) schemes can improve the accuracy and reduce computational costs of traditional finite difference schemes. In addition NSFDs produce numerical solutions which also exhibit essential properties of solution. In this paper, a class of nonstandard 2-stage Runge–Kutta methods of order two (we call it nonstandard RK2) is considered. The preservation of some qualitative properties by this class of methods are discussed. In order to illustrate our results, we provide some numerical examples.  相似文献   

15.
In this article, we present a unified analysis of the simple technique for boosting the order of accuracy of finite difference schemes for time dependent partial differential equations (PDEs) by optimally selecting the time step used to advance the numerical solution and adding defect correction terms in a non-iterative manner. The power of the technique, which is applicable to time dependent, semilinear, scalar PDEs where the leading-order spatial derivative has a constant coefficient, is its ability to increase the accuracy of formally low-order finite difference schemes without major modification to the basic numerical algorithm. Through straightforward numerical analysis arguments, we explain the origin of the boost in accuracy and estimate the computational cost of the resulting numerical method. We demonstrate the utility of optimal time step (OTS) selection combined with non-iterative defect correction (NIDC) on several different types of finite difference schemes for a wide array of classical linear and semilinear PDEs in one and more space dimensions on both regular and irregular domains.  相似文献   

16.
Many thin-plate and thin-shell problems are set on plane reference domains with a curved boundary. Their approximation by conforming finite-elements methods requires 1-curved finite elements entirely compatible with the associated 1-rectilinear finite elements. In this contribution we introduce a 1-curved finite element compatible with the P5-Argyris element, we study its approximation properties, and then, we use such an element to approximate the solution of thin-plate or thin-shell problems set on a plane-curved boundary domain. We prove the convergence and we get a priori asymptotic error estimates which show the very high degree of accuracy of the method. Moreover we obtain criteria to observe when choosing the numerical integration schemes in order to preserve the order of the error estimates obtained for exact integration.  相似文献   

17.
本文提出构造有限单元的新方法——精确有限元法.它可以求解在任意边界条件下任意变系数正定或非正定偏微分方程。文中给出它的收敛性证明和计算偏微分方程的一般格式。用精确元法所得到的单元是一个非协调元,单元之间的相容条件容易处理.与相同自由度普通有限元相比,由精确元法所得到的解的高阶导数具有较高的收敛精度.文末给出数值算例,所得到的结果均收敛于精确解,并有较好的数值精度.  相似文献   

18.
Summary. Interior error estimates are derived for a wide class of nonconforming finite element methods for second order scalar elliptic boundary value problems. It is shown that the error in an interior domain can be estimated by three terms: the first one measures the local approximability of the finite element space to the exact solution, the second one measures the degree of continuity of the finite element space (the consistency error), and the last one expresses the global effect through the error in an arbitrarily weak Sobolev norm over a slightly larger domain. As an application, interior superconvergences of some difference quotients of the finite element solution are obtained for the derivatives of the exact solution when the mesh satisfies some translation invariant condition. Received December 29, 1994  相似文献   

19.
We prove convergence to the entropy solution of a general class of higher order finite volume schemes on unstructured, irregular grids for multidimensional scalar conservation laws. Such grids allow for cells to become flat in the limit. We derive a new entropy inequality for higher order schemes built on Godunov’s numerical flux. Our result implies convergence of suitably modified versions of MUSCL-type finite volume schemes, ENO schemes and the discontinuous Galerkin finite element method.  相似文献   

20.
In this paper some finite element methods for Timoshenko beam, circular arch and Reissner-Mindlin plate problems are discussed. To avoid locking phenomenon, the reduced integration technique is used and a bubble function space is added to increase the solution accuracy. The method for Timoshenko beam is aligned with the Petrov-Galerkin formulation derived in Loula et al. (1987) and can be naturally extended to solve the circular arch and the Reissner-Mindlin plate problems. Optimal order error estimates are proved, uniform with respect to the small parameters. Numerical examples for the circular arch problem shows that the proposed method compares favorably with the conventional reduced integration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号