首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Here, soft X‐ray synchrotron radiation transmitted through microchannel plates is studied experimentally. Fine structures of reflection and XANES Si L‐edge spectra detected on the exit of silicon glass microcapillary structures under conditions of total X‐ray reflection are presented and analyzed. The phenomenon of the interaction of channeling radiation with unoccupied electronic states and propagation of X‐ray fluorescence excited in the microchannels is revealed. Investigations of the interaction of monochromatic radiation with the inner‐shell capillary surface and propagation of fluorescence radiation through hollow glass capillary waveguides contribute to the development of novel X‐ray focusing devices in the future.  相似文献   

2.
A new method for the quantification of organic and inorganic phase fractions was developed for fluoropolymer/acrylic‐blend paints – clear and white paint coatings – on aluminum panels by using wavelength dispersive X‐ray fluorescence spectrometry (WDXRF). The method was developed for clear coat samples (only containing fluoropolymer and acrylic phases) as well as white paint samples by also measuring silica and titanium dioxide levels. Both WDXRF and X‐ray photoelectron spectroscopy (XPS), a surface technique, were investigated. For clear coat samples, we found that WDXRF provided far superior quantitative results to XPS, likely related to the extreme surface sensitivity of XPS, in this case a drawback more than a strength. For white paint samples, the X‐ray fluorescence spectrometry method achieved a relative accuracy typically better than 5% for the organic phases and better than 2% for the inorganic phases, for measurements on 8‐mm diameter samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

4.
A high‐resolution X‐ray fluorescence spectrometer based on Rowland circle geometry was developed and installed at BL14W1 XAFS beamline of Shanghai Synchrotron Radiation Facility. The spectrometer mainly consists of three parts: a sample holder, a spherically curved Si crystal, and an avalanche photodiode detector. The simplicity of the spectrometer makes it easily assembled on the general purpose X‐ray absorption beamline. X‐ray emission spectroscopy and high‐resolution X‐ray absorption near edge spectroscopy can be carried out by using this spectrometer. X‐ray emission preliminary results with high‐resolution about 3 eV of Mn compounds were obtained, which confirmed the feasibility of the spectrometer. The application about Eu (III) retention on manganese dioxide was also studied using this spectrometer. Compared with conventional X‐ray absorption fine structure spectroscopy technique, the fluorescence peak of probed element [Eu (III) Lα] and matrix constituents (Mn Kα) were discriminated using this technique, indicating its superiority in fluorescence detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
X‐ray beam‐position stability is indispensable in cutting‐edge experiments using synchrotron radiation. Here, for the first time, a beam‐position feedback system is presented that utilizes an easy‐to‐use X‐ray beam‐position monitor incorporating a diamond‐fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X‐ray energy, X‐ray intensity, beam size or beam shape.  相似文献   

6.
Capillary optics are used for X‐ray fluorescence micro‐analysis using the Cu Kα line provided by a rotating anode. The excitation beam is focused using a polycapillary lens on a Co–Ti sample. Cylindrical glass capillaries of various diameters are fitted to the X‐ray detector (Energy Dispersive X‐Ray (EDX) analyzer) and displaced along the irradiated zone of the sample. The fluorescence is studied as a function of capillary position. Good agreement is found between experimental and calculated lateral widths of the fluorescence collection, taken into account the cylindrical capillary critical angles relevant in the experiment. The influence of the cylindrical capillary diameter on the signal level detected is studied to estimate the possibility of lateral resolution increase of X‐ray fluorescence technique both in‐lab and in synchrotron environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
An end‐station for resonant inelastic X‐ray scattering and (resonant) X‐ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high‐energy‐resolution applications, including partial fluorescence yield or high‐energy‐resolution fluorescence detected X‐ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non‐resonant inelastic X‐ray scattering measurements of valence electron excitations.  相似文献   

8.
Grazing incidence X‐ray methods are well‐established in the characterization of nanostructures at interfaces and surfaces. The purpose of the experiments reviewed in this work is the comparative characterization of different instrumentation concepts for grazing incidence X‐ray fluorescence analyses. Fluorescence scans recorded with a total reflection X‐ray fluorescence spectrometer featuring a variable angle of incidence are compared with data obtained with synchrotron radiation. The conclusions to the element distribution profiles, which are drawn from fluorescence scans carried out with the respective instrument, are compared. This way, the suitability of the total reflection X‐ray fluorescence spectrometer to complement synchrotron radiation facilities and the possibility to transfer surface and interface analyses from the synchrotron to the laboratory are assessed. The structures investigated include an Au on Si surfaces in the form of layers and particles, submicrometer‐sized droplets, a liquid film, and ions implanted into a Si wafer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Four hundred and sixteen silver coins stemming from the Ottoman Empire (16th and 17th centuries) were analyzed to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. As most of the coins showed the typical green patina on their surfaces due to corrosion processes that have led to the depletion of copper in the near surface domains of the silver coins in comparison to their core composition, small samples had to be taken, embedded in synthetic resin, and cross sectioned to investigate the true‐heart metal composition. μ‐synchrotron micro X‐ray fluorescence analysis and μ‐proton‐induced X‐ray emission were applied to determine the silver contents as well as the minor and trace elements. The type of the alloy was investigated as well as if coins minted in different locations demonstrated homogeneous traits concerning the predominant impurities (Au and Bi), which could suggest a common ore. Finally, energy‐dispersive microanalysis in a scanning electron microscope was applied to study the homogeneity/heterogeneity of the coins and the presence of surface enrichments and to explain differences between the μ‐synchrotron micro X‐ray fluorescence analysis and μ‐proton‐induced X‐ray emission measurements concerning the main component. In general, the silver content of the analyzed specimen varies between 90 and 95%. These outcomes have not supported the historical interpretations, which predict that during the period studied, a debasement of approximately 44% of the silver content of the coins should have occurred. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This study proposes simple techniques involving the use of a thin wire set close to the sample surface to measure the elemental depth distribution in microbeam X‐ray fluorescence analysis. One is the X‐ray fluorescence detection in energy‐dispersive mode using a solid‐state detector in combination with the sample movement, and the other is in projection mode using an X‐ray charge‐coupled device camera. The minimum depth resolution (spatial resolution) obtained with a thin Mo wire is about 15 µm. Compared with a confocal depth‐profiling method, wire depth‐profile analysis is easy to implement, flexible, and has reasonable sensitivity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

12.
Visualizing the elemental distributions of cells and tissues is of growing importance in biology and medical science because such data deepen our understanding of the behavior of metal‐binding proteins and ions. Elemental mapping by X‐ray fluorescence analysis with a hard X‐ray nanobeam is very well suited for this purpose owing to its high sensitivity and high resolution. Using this technique, samples must be prepared without artifacts that are caused by treatments such as chemical fixation and staining procedures. In many studies of elemental mapping, sample preparation is not explicitly considered. To overcome this deficiency, we developed a cryo‐scanning X‐ray fluorescence microscope and installed it in the second experimental hutch of BL29XUL of SPring‐8. We used it to observe frozen‐hydrated cells that had been fixed by a quick‐freezing technique to preserve elemental data of the living state at an X‐ray energy of 11.5 keV. The distributions of K, Ca, Fe, Cu and Zn were successfully visualized. The distributions of these elements (especially those of K, Ca and Fe) differed from those in cells fixed with paraformaldehyde. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Lα and Lβ X‐ray fluorescence spectra of a lead metallic sheet were measured using an energy dispersive X‐ray spectrometer by changing the X‐ray tube voltage and the material of the primary filter. The Lα to Lβ intensity ratio changed from Lα: Lβ = 3: 1 at 15 kV to Lα: Lβ = 1: 1 at 50 kV depending on the X‐ray tube voltage and the filter. The scattered X‐ray spectra of an acrylic slab instead of the sample in the sample holder were measured by changing the applied voltage and the material of the primary filter. The calculated values of the Pb Lα/Lβ intensity ratio of the metallic sheet using the Shiraiwa–Fujino formula by inserting the scattered X‐ray spectra of an acrylic plate as incident X‐ray spectra and the fundamental parameters taken from the Elam database were in good agreement with the experimental ones. We conclude that we can obtain an incident X‐ray spectrum approximately by measuring the scattered X‐ray spectrum without measuring the direct incident beam. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The particle‐induced X‐ray emission (PIXE)‐alpha portable spectrometer of the Laboratori Nazionali del Sud has been upgraded to improve X‐ray energy resolution and efficiency. A value of 124 eV at Mn Κα‐line and a factor of 3 were, respectively, achieved. These enhanced capabilities allowed the thin surface examination of 5 Roman nummi, in which previous near‐surface X‐ray fluorescence measurements revealed traces of mercury. In particular, the new version of the PIXE‐alpha spectrometer has allowed the distinction of the 2.19 keV Hg M‐line from the 2.30 keV S K‐line and the 2.34 keV Pb M‐line. Subsequent elemental association has demonstrated a correlation between surface mercury and silver. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

17.
The application of non‐destructive imaging to characterizing samples has become more important as the costs of samples increase. Imaging a sample via X‐ray techniques is preferable when altering or even touching the sample affects its properties, or when the sample is fielded after characterization. Two laboratory‐based X‐ray techniques used at Los Alamos include micro X‐ray computed tomography (MXCT) and confocal micro X‐ray fluorescence (confocal MXRF). Both methods create a 3D rendering of the sample non‐destructively. MXCT produces a high‐resolution (sub‐µm voxel) rendering of the sample based upon X‐ray absorption; the resulting model is a function of density and does not contain any elemental information. Confocal MXRF produces an elementally specific 3D rendering of the sample, but at a lower (30 × 30 × 65 µm) resolution. By combining data from these two techniques, scientists provided a more comprehensive method of analysis. We will describe a MATLAB routine written to render each of these data sets individually and/or within the same coordinate system. This approach is shown in the analysis of two samples: an integrated circuit surface mounted resistor and a machined piece of polystyrene foam. The samples chosen provide an opportunity to compare and contrast the two X‐ray techniques, identify their weaknesses and show how they are used in a complementary fashion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X‐ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast‐scanning high‐flux X‐ray microprobe, built around a recently commissioned pair of 200 mm‐long Rh‐coated silicon Kirkpatrick–Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 × 1012 photons s?1 into a minimum focal spot size of ~3–5 µm FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X‐ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on‐the‐fly with minimal overhead time (<20 ms per pixel). Together, the high‐flux X‐ray microbeam and the rapid‐scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X‐ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.  相似文献   

19.
Samples with non‐planar surfaces present challenges for X‐ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet.  相似文献   

20.
An automatic sample changer chamber for total reflection X‐ray fluorescence (TXRF) and X‐ray absorption near‐edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF‐XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml?1 to µg ml?1). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml?1) for Ni were found. TXRF‐XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号