首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

2.
Carbon contamination is a general problem of under‐vacuum optics submitted to high fluence. In soft X‐ray beamlines carbon deposit on optics is known to absorb and scatter radiation close to the C K‐edge (280 eV), forbidding effective measurements in this spectral region. Here the observation of strong reflectivity losses is reported related to carbon deposition at much higher energies around 1000 eV, where carbon absorptivity is small. It is shown that the observed effect can be modelled as a destructive interference from a homogeneous carbon thin film.  相似文献   

3.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

4.
The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium‐ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X‐ray Raman scattering spectroscopy (a non‐resonant inelastic X‐ray scattering method) was utilized together with a closed‐circle flow cell. Carbon and oxygen K‐edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue‐shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K‐edge results agree with previous soft X‐ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K‐edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.  相似文献   

5.
A new modular X‐ray‐transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X‐ray flux density of 109 photons mm?2 s?1 in the energy range 30–100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending‐magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off‐the‐shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower‐energy X‐ray sources.  相似文献   

6.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

7.
Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X‐ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high‐quality experiments in transmission geometry. XRD1 operates in the 5.5–14 keV range and has a photon flux of 7.8 × 109 photons s?1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s?1 and the energy resolution ΔE/E = 3 × 10?4.  相似文献   

8.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

9.
10.
Soft‐X‐ray angle‐resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft‐X‐ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X‐ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X‐ray beam and optical axis of the analyzer. The high photon flux of up to 1013 photons s?1 (0.01% bandwidth)?1 delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft‐X‐ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft‐X‐ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three‐dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.  相似文献   

11.
Crystal diffraction of three membrane proteins (cytochrome bc1 complex, sarcoplasmic reticulum Ca2+ ATPase, ADP‐ATP carrier) and of one nucleoprotein complex (leucyl tRNA synthetase bound to tRNAleu, leuRS:tRNAleu) was tested at wavelengths near the X‐ray K‐absorption edge of phosphorus using a new set‐up for soft X‐ray diffraction at the beamline ID01 of the ESRF. The best result was obtained from crystals of Ca2+ ATPase [adenosin‐5′‐(β,γ‐methylene) triphosphate complex] which diffracted out to 7 Å resolution. Data were recorded at a wavelength at which the real resonant scattering factor of phosphorus reaches the extreme value of ?20 electron units. The positions of the four triphosphates of the monoclinic unit cell of the ATPase have been obtained from a difference Fourier synthesis based on a limited set of anomalous diffraction data.  相似文献   

12.
The technical implementation of a multi‐MHz data acquisition scheme for laser–X‐ray pump–probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high‐repetition rates of X‐ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60‐bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X‐ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12‐bit resolution. These traces are then processed to deliver an integrated value for each recorded single X‐ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single‐shot values are averaged over ~107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X‐ray probe energy. The sensitivity reaches down to the shot‐noise limit, and signal‐to‐noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse?1 and is only technically limited by the utilized APD.  相似文献   

13.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

14.
Vibration is often a problem causing poor quality of photon beams at synchrotron radiation facilities, since beamlines are quite sensitive to vibrations. Therefore, vibration analysis and control at synchrotron radiation facilities is crucial. This paper presents investigations on mechanical vibrations at four beamlines and endstations at the Canadian Light Source, i.e. the Canadian Macromolecular Crystallography Facility 08ID‐1 beamline, the Hard X‐ray MicroAnalysis 06ID‐1 beamline, the Resonant Elastic and Inelastic Soft X‐ray Scattering 10ID‐2 beamline, and the Scanning Transmission X‐ray Microscope endstation at the Spectromicroscopy 10ID‐1 beamline. This study identifies vibration sources and investigates the influence of mechanical vibrations on beamline performance. The results show that vibrations caused by movable mechanical equipment significantly affect the data acquired from beamlines.  相似文献   

15.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

16.
A carbon layer deposited on an optical component is the result of complex interactions between the optical surface, adsorbed hydrocarbons, photons and secondary electrons (photoelectrons generated on the surface of optical elements). In the present study a synchrotron‐induced contamination layer on a 340 mm × 60 mm Au‐coated toroidal mirror has been characterized. The contamination layer showed a strong variation in structural properties from the centre of the mirror to the edge region (along the long dimension of the mirror) due to the Gaussian distribution of the incident photon beam intensity/power on the mirror surface. Raman scattering measurements were carried out at 12 equidistant (25 mm) locations along the length of the mirror. The surface contamination layer that formed on the Au surface was observed to be hydrogenated amorphous carbon film in nature. The effects of the synchrotron beam intensity/power distribution on the structural properties of the contamination layer are discussed. The I(D)/I(G) ratio, cluster size and disordering were found to increase whereas the sp2:sp3 ratio, G peak position and H content decreased with photon dose. The structural parameters of the contamination layer in the central region were estimated (thickness ? 400 Å, roughness ? 60 Å, density ? 72% of bulk graphitic carbon density) by soft X‐ray reflectivity measurements. The amorphous nature of the layer in the central region was observed by grazing‐incidence X‐ray diffraction.  相似文献   

17.
18.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Here, soft X‐ray synchrotron radiation transmitted through microchannel plates is studied experimentally. Fine structures of reflection and XANES Si L‐edge spectra detected on the exit of silicon glass microcapillary structures under conditions of total X‐ray reflection are presented and analyzed. The phenomenon of the interaction of channeling radiation with unoccupied electronic states and propagation of X‐ray fluorescence excited in the microchannels is revealed. Investigations of the interaction of monochromatic radiation with the inner‐shell capillary surface and propagation of fluorescence radiation through hollow glass capillary waveguides contribute to the development of novel X‐ray focusing devices in the future.  相似文献   

20.
A pre‐focused X‐ray beam at 12 keV and 9 keV has been used to illuminate a single‐bounce capillary in order to generate a high‐flux X‐ray microbeam. The BioCAT undulator X‐ray beamline 18ID at the Advanced Photon Source was used to generate the pre‐focused beam containing 1.2 × 1013 photons s?1 using a sagittal‐focusing double‐crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre‐focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre‐focused beam (`in‐line') and (ii) where one side of the capillary was aligned with the beam (`off‐line'). The latter arrangement delivered more flux (3.3 × 1012 photons s?1) and smaller spot sizes (≤10 µm FWHM in both directions) for a photon flux density of 4.2 × 1010 photons s?1µm?2. The combination of the beamline main optics with a large‐working‐distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer‐size X‐ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm?2. Micro‐XANES experiments are also feasible using this combined optical arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号