首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
By mimicking the molecular structure of 4,4'-bis(N-carbazolyl)-2,2'-biphenyl (CBP), which is a widely used host material, a new series of host molecules (carbazole-endcapped heterofluorenes, CzHFs) were designed by linking the hole-transporting carbazole to the core heterofluorene molecules in either meta or para positions of the heterofluorene. The aromatic cores considered in this study are biphenyl, fluorene, silafluorenes, germafluorenes, carbazole, phosphafluorene, oxygafluorene, and sulfurafluorene. To reveal their molecular structures, optoelectronic properties and structure-property relationships of the proposed host materials, an in-depth theoretical investigation was elaborated via quantum chemical calculations. The electronic structures in the ground states, cationic and anionic states, and lowest triplet states of these designed molecules have been studied with emphasis on the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), energy gaps (E(g)), triplet energy gaps ((3)E(g)), as well as some other electronic properties including ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ), triplet exciton generation fraction (χ(T)), spin density distributions (SD), and absorption spectra. These photoelectronic properties can be tuned by chemical modifications of the heteroatom and the carbazole substitution at different positions. This study provides theoretical insights into the nature of host molecules, and shows that the designed CzHFs can meet the requirements of the host materials for triplet emitters.  相似文献   

2.
A series of novel carbazole compounds was synthesized and tested for their suitability as host for triplet emitters in an organic-light emitting diode (OLED). In these compounds, a carbazole unit is either connected to other carbazole units to form carbazole dimers and trimers or to fluorene and oxadiazole derivatives to form mixed compounds. The HOMO level of carbazole compounds can be tuned by substitution at the 3, 6, and/or 9 positions. Making oligomers by connecting carbazole molecules via their 3 (3') positions shifts the HOMO level to higher energy, while replacing alkyl groups at the 9 (9') positions by aryl groups shifts the HOMO level to lower energy. Furthermore, it has been found that the triplet energy of these compounds is determined by the presence of poly(p-phenyl) chains in the molecular structure. By identifying the longest poly(p-phenyl) chain, one can predict whether a compound will be a suitable host for a high-energy triplet emitter. An overview of HOMO levels, singlet and triplet levels, and exchange energies is given for all carbazole compounds synthesized. Finally, OLEDs employing two selected carbazole compounds as host and fac-tris(2-phenylpyridine)-iridium (Ir(ppy)(3)) as guest were constructed and characterized electrically.  相似文献   

3.
A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.  相似文献   

4.
The hydrogen bonding interaction between excited carbazole and pyridine was investigated in cyclohexane by an emission—absorption flash technique. Triplet carbazole is deactivated by pyridine with a rate constant of 4.9 × 107 M−1 s−1, yielding the carbazyl radical with a reaction yield of unity. The triplettriplet absorption of carbazole hydrogen bonded with pyridine was not observed. By means of the triplet energy transfer from N-ethylcarbazole to the hydrogen-bonded carbazole it was found that the triplet state of the hydrogen-bonded carbazole yields the carbazyl radical wtih a reaction yield of 0.7. Excited singlet carbazole is deactivated by pyridine with a diffusion-controlled rate, yielding the carbazyl radical with a reaction yield of 0.1. Flashing of the hydrogen-bonded carbazole does not yield carbazyl radical. The difference in the reaction yields between the free and the hydrogen-bonded species indicates that the dynamic hydrogen atom transfer reaction occurs from the encounter state in competition with hydrogen bond formation.  相似文献   

5.
This article sheds new light on the interplay of electronic and conformational effects in luminescent bipolar molecules. A series of carbazole/1,3,4-oxadiazole hybrid molecules is described in which the optoelectronic properties are systematically varied by substituent effects which tune the intramolecular torsion angles. The synthesis, photophysical properties, cyclic voltammetric data, X-ray crystal structures, and DFT calculations are presented. Excited state intramolecular charge transfer (ICT) is observed from the donor carbazole/2,7-dimethoxycarbazole to the acceptor phenyl/diphenyloxadiazole moieties. Introducing more bulky substituents onto the diphenyloxadiazole fragment systematically increases the singlet and triplet energy levels (E(S) and E(T)) and blue shifts the absorption and emission bands. The triplet excited state is located mostly on the oxadiazole unit. The introduction of 2,7-dimethoxy substituents onto the carbazole moiety lowers the value of E(S), although E(T) is unaffected, which means that the singlet-triplet gap is reduced (for 7bE(S) - E(T) = 0.61 eV). A strategy has been established for achieving unusually high triplet levels for bipolar molecules (E(T) = 2.64-2.78 eV at 14 K) while at the same time limiting the increase in the singlet energy.  相似文献   

6.
Using gated optical spectroscopy at low temperatures, a polyspirobifluorene has been compared with an alternating carbazole-spirobifluorene copolymer in which the backbone conjugation is interrupted due to meta coupling of the carbazole moieties. In the copolymer both singlet and triplet energy levels are blueshifted by 130 meV with respect to the homopolymer, resulting in an unaltered singlet-to-triplet splitting. Though the barrier for triplet exciton migration increases from 4.4 to 6.0 meV for the copolymer compared to the homopolymer, it still remained low enough to ensure efficient triplet diffusion at ambient temperature.  相似文献   

7.
The purposeful modulation of the optoelectronic properties was realised on the basis of a series of the large, conjugated, phosphine oxide hosts 9,9‐bis‐{4′‐[2‐(diphenylphosphinoyl)phenoxy]biphenyl‐4‐yl}‐9H‐fluorene (DDPESPOF), 9,9‐bis‐{3′‐(diphenylphosphinoyl)‐4′‐[2‐(diphenylphosphinoyl)phenoxy]biphenyl‐4‐yl}‐9H‐fluorene (DDPEPOF), 9‐[4′‐(9‐{4′‐[2‐(diphenylphosphoryl)phenoxy]biphenyl‐4‐yl}‐9H‐fluoren‐9‐yl)biphenyl‐4‐yl]‐9H‐carbazole (DPESPOFPhCz) and 9‐[4′‐(9‐{3′‐(diphenylphosphoryl)‐4′‐[2‐(diphenylphosphoryl)phenoxy]biphenyl‐4‐yl}‐9H‐fluoren‐9‐yl)biphenyl‐4‐yl]‐9H‐carbazole (DPEPOFPhCz). The last two are quaternary with fluorenyls as linking bridges, diphenylphosphine oxide (DPPO) moieties as electron acceptors and diphenylethers and carbazolyls as two different kinds of electron donors. Owing to the fine‐organised molecular structures and the mixed indirect and multi‐insulating linkages, all of these hosts achieve the same first triplet energy levels (T1) of 2.86 eV for exothermic energy transfer to phosphorescent dopants. The first singlet energy levels (S1) and the carrier injection/transportation ability of the hosts were accurately modulated, so that DPESPOFPhCz and DPEPOFPhCz revealed extremely similar optoelectronic properties. However, the T1 state of the former is localised on fluorenyl, whereas the carbazolyl mainly contributes to the T1 state of the latter. A lower driving voltages and much higher efficiencies of the devices based on DPESPOFPhCz indicated that the chromophore‐localised T1 state can suppress the quenching effects through realising independent contributions from the different functional groups to the optoelectronic properties and the embedding and protecting effect on the T1 states by peripheral carrier transporting groups.  相似文献   

8.
Syn- And anti-[3.3](3,9)carbazolophanes, which are suitable model compounds for sandwich and partial-overlap excimers, respectively, have been synthesized and characterized; the structures of both singlet and triplet carbazole excimer have been described.  相似文献   

9.
A series of carbazole/quinoxaline hybrids have been synthesized by classic Ullmann and Pd/Cu-catalyzed Sonogashira coupling reaction. Their photophysical, thermal, and electrochemical properties were investigated. The introduction of electron rich carbazole and electron deficient quinoxaline on to the 1,3,5-benzene center leads to a twisted structure with good glass forming property and imparts a bipolar character. The triplet energies in the range of 2.34-2.53 eV indicate them as potential host materials in phosphorescent OLEDs.  相似文献   

10.
Russian Journal of General Chemistry - A series of carbazole–thiophene oligomers linked at the 3,6-positions of the carbazole fragment of 4,4′-bis(carbazol-9-yl)biphenyl (CBP) and...  相似文献   

11.
设计并合成了一种基于咔唑的新型的磷光主体材料, 即9-(6-(9-咔唑基)己基)咔唑(hCP), 对其结构及性能进行了表征. 研究结果表明: hCP分子中两个咔唑与烷基链是非共平面的, 由于长烷基链的缠绕, 因而具有较高的三线态能级(3.01 eV)和较高的玻璃化温度(93℃); 以hCP为主体材料, 与绿光磷光染料三(2-苯基吡啶)合铱(Ir(ppy)3)掺杂作为发光层, 制备了磷光电致发光器件, 其器件的最大电流效率为15.1 cd·A-1, 相对于4,4'-N,N'-二咔唑基联苯(CBP)为主体材料的参考器件, 显著提高了34.8%.  相似文献   

12.
Intermoiety electronic interactions in the singlet and triplet excimer states of triply bridged [3.3.n](3,6,9)carbazolophanes ([3.3.n]Cz, n=3-6) were studied by emission and transient absorption measurements. In these [3.3.n]Cz molecules, the dihedral angle and the separation distance r between fully overlapped two carbazole rings change systematically from nearly parallel (n=3, r=3.35 A) to oblique (n=6, r=4.03 A). In rigid glass at 77 K, [3.3.n]Cz (n=3, 4) (r<4 A) exhibited red-shifted and structureless excimer fluorescence and phosphorescence while [3.3.n]Cz (n=5, 6) (r>4 A) exhibited monomer-like vibrational fluorescence and phosphorescence. In solution at 130 K, all [3.3.n]Cz molecules exhibited an excimeric fluorescence band while [3.3.5]Cz still exhibited monomer-like phosphorescence. Transient absorption spectra measured at 294 K exhibited local excitation and charge-transfer bands for all [3.3.n]Cz molecules in the excited singlet and triplet states, suggesting that not only singlet but also triplet excimers of carbazole are formed at room temperature. Furthermore, the singlet-triplet energy gap decreased with the decrease in n, suggesting that electrons are effectively delocalized over the two carbazole moieties. These findings showed that both singlet and triplet excimers of carbazole are formed with a separation distance shorter than about 4 A and are most stable in the parallel-sandwich structure and that the configurational mixing between exciton resonance and charge resonance states plays an essential role in the formation of singlet and triplet excimers of carbazole.  相似文献   

13.
Bichromophoric compound 3 beta-((2-(methoxycarbonyl)bicyclo[2.2.1]hepta-2,5-diene-3-yl)carboxy)androst-5-en-17 beta-yl-[2-(N-carbazolyl)acetate] (NBD-S-CZ) was synthesized and its photochemistry was examined by fluorescence quenching, flash photolysis, and chemically induced dynamic nuclear polarization (CIDNP) methods. Fluorescence quenching measurements show that intramolecular electron transfer from the singlet excited state of the carbazole to the norbornadiene group in NBD-S-CZ occurs with an efficiency (Phi SET) of about 14 % and rate constant (kSET) of about 1.6 x 10(7) s-1. Phosphorescence and flash photolysis studies reveal that intramolecular triplet energy transfer and electron transfer from the triplet carbazole to the norbornadiene group proceed with an efficiency (TET + TT) of about 52 % and rate constant (kTET + kTT) of about 3.3 x 10(5) s-1. Upon selective excitation of the carbazole chromophore, nuclear polarization is detected for protons of the norbornadiene group (emission) and its quadricyclane isomer (enhanced absorption); this suggests that the isomerization of the norbornadiene group to the quadricyclane proceeds by a radical-ion pair recombination mechanism in addition to intramolecular triplet sensitization. The long-distance intramolecular triplet energy transfer and electron transfers starting both from the singlet and triplet excited states are proposed to proceed by a through-bond mechanism.  相似文献   

14.
The ESR spectra of triplet-state biphenyl oriented and diluted in a single crystal of dibenzofuran are analyzed. Experimental evidence for the planarity of triplet biphenyl is discussed. The spin-density map is outlined and compared with the previous one obtained using fluorinated compounds.  相似文献   

15.
A novel class of carbazole polymers, nitrogen‐linked poly(2,7‐carbazole)s, was synthesized by polycondensation between two bifunctional monomers using the palladium‐catalyzed amination reaction. The polymers were characterized by 1H NMR, Infrared, Gel permeation chromatography, and MALDI‐TOF MS and it was revealed that the combination of the monomer structures is important for producing high molecular weight polymers. Thermal analysis indicated a good thermal stability with high glass transition temperatures, e.g., 138 °C for the higher molecular weight polymer P2 . To pursue the application possibilities of these polymers, their optical properties and energy levels were investigated by UV‐Vis absorption and fluorescence spectra as well as their electrochemical characteristics. Although the blue light emission was indeed observed for all polymers in solution, the quantum yields were very low and the solid films were not fluorescent. On the other hand, the HOMO levels of the polymers estimated from the onset potentials for the first oxidation in the solid thin films were relatively high in the range of ?5.12 to ?5.20 eV. Therefore, light emitting diodes employing these polymers as a hole‐transport layer and iridium(III) complex as a triplet emitter were fabricated. The device of the nitrogen‐linked poly(2,7‐carbazole) P3 with p,p′‐biphenyl spacer, which has a higher HOMO level and a higher molecular weight, showed a much better performance than the device of P2 with m‐phenylene spacer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3880–3891, 2009  相似文献   

16.
设计合成了外围带咔唑基团的联苯桥联齐聚对苯撑乙烯撑衍生物, 用核磁共振氢谱、质谱和元素分析对其结构和纯度进行了表征. 热分析测试结果表明: 该化合物具有良好的化学结构稳定性和相态稳定性. 玻璃化转变温度为142.05 ℃, 热失重开始温度为306 ℃. 退火处理前后的旋涂薄膜的吸收光谱的性状和X射线衍射数据说明该化合物的固体薄膜为无定形薄膜, 而且高温下退火4 h没有明显变化. 研究结果表明, 以联苯桥联结构为中心, 外围修饰大体积的咔唑基团的分子设计不仅在减弱分子聚集和抑制π-π相互作用方面取得了良好效果, 而且保持了联苯桥联DSB衍生物的结构稳定性.  相似文献   

17.
ESR spectroscopy is applied to phosphorescent dibenzothiophene oriented in a dibenzofuran crystal. The dibenzothiophene triplet is shown to be very similar to the biphenyl triplet.  相似文献   

18.
Triplet excitons in electron donor—acceptor charge-transfer (CT) molecular crystals are generated through the intersystem crossing process by excitation in the CT visible band and give rise to delayed fluorescence. Delayed-fluorescence optically detected magnetic resonance (DF ODMR) in magnetic field is analyzed in terms of microwave-induced transitions between energy levels of either the isolated triplet excitons or the annihilating triplet exciton pair. The spin polarization of the triplet excitons plays an important role in the described phenomena. A comparison between DF ODMR and EPR spectra of the anthracene—tetracyanobenzene and biphenyl—tetracyanobenzene systems is presented. In the former case the microwave transitions occurring between free exciton sublevels are predominantly responsible of the DF ODMR signal, whereas the transitions between energy levels of the exciton pair are the most important for biphenyl—TCNB.  相似文献   

19.
Biphenyl crystals to which have been added to 10?2 mole/mole of benzophenone and a various concentration of naphthalene, excited by radiation absorbed only by benzophenone molecules give naphthalene phosphorescence. This emission is interpreted as a consequence of energy migration from benzophenone molecules to the naphthalene molecules through the triplet exciton band of biphenyl. From the study, at 120 K, of the intensity of the naphthalene phosphorescence dependence on concentrations, a coefficient of diffusion of triplet excitons of biphenyl is measured (D ≈ 10?6 cm2 s?1). Analogous kinetics applied to binary mixed crystals, naphthalene-benzophenone, give a coefficient of diffusion of triplet excitions for benzophenone (D ≈ 10?7 cm2 s?1).  相似文献   

20.
Simple is good! Based on biphenyl molecules, two bipolar host materials with high triplet energies have been rationally designed, synthesized, and fully characterized. Deep blue phosphorescent organic light-emitting diodes, which employ the new hosts and an iridium(III) complex as triplet emitter, show a maximum current efficiency of 40 cd A(-1), a maximum power efficiency of 36 lm W(-1), and a maximum external quantum efficiency of 19.5 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号