首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using color interchanges, we prove statements like the following: If G is a simple cubic graph whose edges cannot be 3-colored, and W is a 5-circuit of G, then the number of edge-3-colorings of G-W with three given colors is a multiple of 5.  相似文献   

2.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G) ? Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|?1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a′(G) ? Δ + 3. Triangle‐free planar graphs satisfy Property A. We infer that a′(G) ? Δ + 3, if G is a triangle‐free planar graph. Another class of graph which satisfies Property A is 2‐fold graphs (union of two forests). © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
In this paper we construct a planar graph of degree four which admits exactly Nu 3-colorings, we prove that such a graph must have degree at least four, and we consider various generalizations. We first allow our graph to have either one or two vertices of infinite degree and/or to admit only finitely many colorings and we note how this effects the degrees of the remaining vertices. We next consider n-colorings for n>3, and we construct graphs which we conjecture (but cannot prove) are of minimal degree. Finally, we consider nondenumerable graphs, and for every 3 <n<ω and every infinite cardinal k we construct a graph of cardinality k which admits exactly kn-colorings. We also show that the number of n-colorings of a denumerable graph can never be strictly between Nu and 2Nu and that an appropriate generalization holds for at least certain nondenumerable graphs.  相似文献   

4.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

5.
In this paper, we have defined the concept of the depth of a planar graph. We show that, if G is a simple finite planar graph with p vertices and q edges and q > 3(p ? 1) ? p/2s?1, then the depth of G is at least equal to s.  相似文献   

6.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

7.
A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut (X) acting transitively on its edge set but not on its vertex set. In the case of GA, we call X a semisymmetric graph. Let p be a prime. It was shown by Folkman (J Comb Theory 3:215–232, 1967) that a regular edge-transitive graph of order 2p or 2p 2 is necessarily vertex-transitive. The smallest semisymmetric graph is the Folkman graph. In this study, we classify all connected cubic semisymmetric graphs of order 18p n , where p is a prime and \({n \geq 1}\) .  相似文献   

8.
Completions of partial elliptic matrices are studied. Given an undirected graph G, it is shown that every partial elliptic matrix with graph G can be completed to an elliptic matrix if and only if the maximal cliques of G are pairwise disjoint. Further, given a partial elliptic matrix A with undirected graph G, it is proved that if G is chordal and each specified principal submatrix defined by a pair of intersecting maximal cliques is nonsingular, then A can be completed to an elliptic matrix. Conversely, if G is nonchordal or if the regularity condition is relaxed, it is shown that there exist partial elliptic matrices which are not completable to an elliptic matrix. In the process we obtain several results concerning chordal graphs that may be of independent interest.  相似文献   

9.
Yanfeng Luo 《Discrete Mathematics》2009,309(20):5943-1987
Let G be a finite group and A a nonempty subset (possibly containing the identity element) of G. The Bi-Cayley graph X=BC(G,A) of G with respect to A is defined as the bipartite graph with vertex set G×{0,1} and edge set {{(g,0),(sg,1)}∣gG,sA}. A graph Γ admitting a perfect matching is called n-extendable if ∣V(Γ)∣≥2n+2 and every matching of size n in Γ can be extended to a perfect matching of Γ. In this paper, the extendability of Bi-Cayley graphs of finite abelian groups is explored. In particular, 2-extendable and 3-extendable Bi-Cayley graphs of finite abelian groups are characterized.  相似文献   

10.
A Grundy n-coloring of a finite graph is a coloring of the points of the graph with the non-negative integers smaller than n such that each point is adjacent to some point of each smaller color but to none of the same color. The Grundy number of a graph is the maximum n for which it has a Grundy n-coloring. Characterizations are given of the families of finite graphs G such that for each induced subgraph H of G: (1) the Grundy number of H is equal to the chromatic number of H; (2) the Grundy number of H is equal to the maximum clique size of H; (3) the achromatic number of H is equal to the chromatic number of H; (4) the achromatic number of H is equal to the maximum clique size of H. The definitions are further extended to infinite graphs, and some of the above characterizations are shown to be true for denumerable graphs and locally finite graphs.  相似文献   

11.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

12.
A graph is planar if it can be embedded on the plane without edge-crossings. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented triangle-free planar graph has an oriented chromatic number at most 40, that improves the previous known bound of 47 [Borodin, O. V. and Ivanova, A. O., An oriented colouring of planar graphs with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239–249, 2005]. We also prove that every oriented 2-outerplanar graph has an oriented chromatic number at most 40, that improves the previous known bound of 67 [Esperet, L. and Ochem, P. Oriented colouring of 2-outerplanar graphs, Inform. Process. Lett., vol. 101(5), 215–219, 2007].  相似文献   

13.
The purpose of this paper which is a sequel of “ Boolean planarity characterization of graphs ” [9] is to show the following results.
  1. Both of the problems of testing the planarity of graphs and embedding a planar graph into the plane are equivalent to finding a spanning tree in another graph whose order and size are bounded by a linear function of the order and the size of the original graph, respectively.
  2. The number of topologically non-equivalent planar embeddings of a Hamiltonian planar graphG is τ(G)=2 c(H)?1, wherec (H) is the number of the components of the graphH which is related toG.
  相似文献   

14.
For a finite group G we define the graph Γ(G) to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes ${\mathcal {A}, \mathcal {B}}For a finite group G we define the graph Γ(G) to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes A, B{\mathcal {A}, \mathcal {B}} are joined by an edge if for some A ? AB ? B A{A \in \mathcal {A},\, B \in \mathcal {B}\, A} and B permute. We characterise those groups G for which Γ(G) is complete.  相似文献   

15.
In this paper, the notion of relative chromatic number χ(G, H) for a pair of graphs G, H, with H a full subgraph of G, is formulated; namely, χ(G, H) is the minimum number of new colors needed to extend any coloring of H to a coloring of G. It is shown that the four color conjecture (4CC) is equivalent to the conjecture (R4CC) that χ(G, H) ≤ 4 for any (possibly empty) full subgraph H of a planar graph G and also to the conjecture (CR3CC) that χ(G, H) ≤ 3 if H is a connected and nonempty full subgraph of planar G. Finally, relative coloring theorems on surfaces other than the plane or sphere are proved.  相似文献   

16.
The problem examined in this paper comes from percolation theory. G = (X, E) is a simple geometric planar graph each vertex of which has a finite degree. We partition X in two subsets X1, X2 and we colour in blue each vertex and edge of the subgraph Gx generated by X1 and in red each vertex and edge of Gx2. We obtain blue clusters (resp. red clusters) namely the components of Gx1 (resp. of Gx2). We want to characterize G so that for any such coloration, any finite cluster of one colour is surrounded by a cluster of the other colour. A necessary and sufficient condition is that every component of G is a maximal infinite planar graph and that every vertex x is surrounded by the cycle which connects the vertices adjacent to x.  相似文献   

17.
Jiaojiao Wu 《Discrete Mathematics》2009,309(12):3866-3870
This paper proves that if G is a cubic graph which has a Hamiltonian path or G is a bridgeless cubic graph of large girth, then its incidence coloring number is at most 5. By relating the incidence coloring number of a graph G to the chromatic number of G2, we present simple proofs of some known results, and characterize regular graphs G whose incidence coloring number equals Δ(G)+1.  相似文献   

18.
A graph H is a cover of a graph G if there exists a mapping φ from V( H ) onto V( G ) such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ(υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the results of Archdeacon, Fellows, Negami, and the author that the conjecture holds as long as K 1,2,2,2 has no finite planar cover. However, this is still an open question, and K 1,2,2,2 is not the only minor‐minimal graph in doubt. Let ??4 (?2) denote the graph obtained from K 1,2,2,2 by replacing two vertex‐disjoint triangles (four edge‐disjoint triangles) not incident with the vertex of degree 6 with cubic vertices. We prove that the graphs ??4 and ?2 have no planar covers. This fact is used in [P. Hlin?ný, R. Thomas, On possible counterexamples to Negami's planar cover conjecture, 1999 (submitted)] to show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 227–242, 2001  相似文献   

19.
We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k⩾0, such that a planar graph can be obtained from G by k splitting operations. Such operation replaces a vertex v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. We prove that the splitting number decision problem is NP-complete when restricted to cubic graphs. We obtain as a consequence that planar subgraph remains NP-complete when restricted to cubic graphs. Note that NP-completeness for cubic graphs implies NP-completeness for graphs not containing a subdivision of K5 as a subgraph.  相似文献   

20.
Let G be a non-trivial, loopless graph and for each non-trivial subgraph H of G, let . The graph G is 1-balanced if γ(G), the maximum among g(H), taken over all non-trivial subgraphs H of G, is attained when H=G. This quantity γ(G) is called the fractional arboricity of the graph G. The value γ(G) appears in a paper by Picard and Queyranne and has been studied extensively by Catlin, Grossman, Hobbs and Lai. The quantity γ(G)−g(G) measures how much a given graph G differs from being 1-balanced. In this paper, we describe a systematic method of modifying a given graph to obtain a 1-balanced graph on the same number of vertices and edges. We obtain this by a sequence of iterations; each iteration re-defining one end-vertex of an edge in the given graph. After each iteration, either the value γ of the new graph formed is less than that of the graph from the previous iteration or the size of the maximal γ-achieving subgraph of the new graph is smaller than that of the graph in the previous iteration. We show that our algorithm is polynomial in time complexity. Further ways to decrease the number of iterations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号