首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce the time-dependent capacitated profitable tour problem with time windows and precedence constraints. This problem concerns determining a tour and its departure time at the depot that maximizes the collected profit minus the total travel cost (measured by total travel time). To deal with road congestion, travel times are considered to be time-dependent. We develop a tailored labeling algorithm to find the optimal tour. Furthermore, we introduce dominance criteria to discard unpromising labels. Our computational results demonstrate that the algorithm is capable of solving instances with up to 150 locations (75 pickup and delivery requests) to optimality. Additionally, we present a restricted dynamic programing heuristic to improve the computation time. This heuristic does not guarantee optimality, but is able to find the optimal solution for 32 instances out of the 34 instances.  相似文献   

2.
The organization of a specialized transportation system to perform transports for elderly and handicapped people is usually modeled as dial-a-ride problem. Users place transportation requests with specified pickup and delivery locations and times. The requests have to be completed under user inconvenience considerations by a specified fleet of vehicles. In the dial-a-ride problem, the aim is to minimize the total travel times respecting the given time windows, the maximum user ride times, and the vehicle restrictions. This paper introduces a dynamic programming algorithm for the dial-a-ride problem and demonstrates its effective application in (hybrid) metaheuristic approaches. Compared to most of the works presented in literature, this approach does not make use of any (commercial) solver. We present an exact dynamic programming algorithm and a dynamic programming based metaheuristic, which restricts the considered solution space. Then, we propose a hybrid metaheuristic algorithm which integrates the dynamic programming based algorithms into a large neighborhood framework. The algorithms are tested on a given set of benchmark instances from the literature and compared to a state-of-the-art hybrid large neighborhood search approach.  相似文献   

3.
Many optimal experimental designs depend on one or more unknown model parameters. In such cases, it is common to use Bayesian optimal design procedures to seek designs that perform well over an entire prior distribution of the unknown model parameter(s). Generally, Bayesian optimal design procedures are viewed as computationally intensive. This is because they require numerical integration techniques to approximate the Bayesian optimality criterion at hand. The most common numerical integration technique involves pseudo Monte Carlo draws from the prior distribution(s). For a good approximation of the Bayesian optimality criterion, a large number of pseudo Monte Carlo draws is required. This results in long computation times. As an alternative to the pseudo Monte Carlo approach, we propose using computationally efficient Gaussian quadrature techniques. Since, for normal prior distributions, suitable quadrature techniques have already been used in the context of optimal experimental design, we focus on quadrature techniques for nonnormal prior distributions. Such prior distributions are appropriate for variance components, correlation coefficients, and any other parameters that are strictly positive or have upper and lower bounds. In this article, we demonstrate the added value of the quadrature techniques we advocate by means of the Bayesian D-optimality criterion in the context of split-plot experiments, but we want to stress that the techniques can be applied to other optimality criteria and other types of experimental designs as well. Supplementary materials for this article are available online.  相似文献   

4.
We give a new algorithm for solving the Fermat-Weber location problem involving mixed gauges. This algorithm, which is derived from the partial inverse method developed by J.E. Spingarn, simultaneously generates two sequences globally converging to a primal and a dual solution respectively. In addition, the updating formulae are very simple; a stopping rule can be defined though the method is not dual feasible and the entire set of optimal locations can be obtained from the dual solution by making use of optimality conditions. When polyhedral gauges are used, we show that the algorithm terminates in a finite number of steps, provided that the set of optimal locations has nonepty interior and a counterexample to finite termination is given in a case where this property is violated. Finally, numerical results are reported and we discuss possible extensions of these results.  相似文献   

5.
《Optimization》2012,61(7):1013-1032
In this article we study non-smooth Lipschitz programming problems with set inclusion and abstract constraints. Our aim is to develop approximate optimality conditions for minimax programming problems in absence of any constraint qualification. The optimality conditions are worked out not exactly at the optimal solution but at some points in a neighbourhood of the optimal solution. For this reason, we call the conditions as approximate optimality conditions. Later we extend the results in terms of the limiting subdifferentials in presence of an appropriate constraint qualification thereby leading to the optimality conditions at the exact optimal point.  相似文献   

6.
Gert Wanka  Oleg Wilfer 《Optimization》2018,67(7):1095-1119
Abstract

Duality statements are presented for multifacility location problems as suggested by Drezner Hiu 1991, where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. We develop corresponding dual problems for the cases with and without set-up costs and present associated optimality conditions. In the concluding part of this note we use these optimality conditions for a geometrical characterization of the set of optimal solutions and consider for an illustration corresponding examples.  相似文献   

7.
The problem of optimal placement of point sources is formulated as a distributed optimal control problem with sparsity constraints. For practical relevance, partial observations as well as partial and non-negative controls need to be considered. Although well-posedness of this problem requires a non-reflexive Banach space setting, a primal-predual formulation of the optimality system can be approximated well by a family of semi-smooth equations, which can be solved by a superlinearly convergent semi-smooth Newton method. Numerical examples indicate the feasibility for optimal light source placement problems in diffusive photochemotherapy.  相似文献   

8.
In this paper, we study the influence of noise on subgradient methods for convex constrained optimization. The noise may be due to various sources, and is manifested in inexact computation of the subgradients and function values. Assuming that the noise is deterministic and bounded, we discuss the convergence properties for two cases: the case where the constraint set is compact, and the case where this set need not be compact but the objective function has a sharp set of minima (for example the function is polyhedral). In both cases, using several different stepsize rules, we prove convergence to the optimal value within some tolerance that is given explicitly in terms of the errors. In the first case, the tolerance is nonzero, but in the second case, the optimal value can be obtained exactly, provided the size of the error in the subgradient computation is below some threshold. We then extend these results to objective functions that are the sum of a large number of convex functions, in which case an incremental subgradient method can be used.  相似文献   

9.
The ship placement problem constitutes a daily challenge for planners in tide river harbours. In essence, it entails positioning a set of ships into as few lock chambers as possible while satisfying a number of general and specific placement constraints. These constraints make the ship placement problem different from traditional 2D bin packing. A mathematical formulation for the problem is presented. In addition, a decomposition model is developed which allows for computing optimal solutions in a reasonable time. A multi-order best fit heuristic for the ship placement problem is introduced, and its performance is compared with that of the left-right-left-back heuristic. Experiments on simulated and real-life instances show that the multi-order best fit heuristic beats the other heuristics by a landslide, while maintaining comparable calculation times. Finally, the new heuristic’s optimality gap is small, while it clearly outperforms the exact approach with respect to calculation time.  相似文献   

10.
This paper describes an optimization technique based on an heuristic procedure which is applied to analyse and improve the efficiency of the design of Global Positioning System (GPS) surveying networks. GPS is a valuable survey tool because of its ability to increase the accuracy, speed and flexibility of a survey. A GPS network can be defined as a number of stations, which are co-ordinated by a series of sessions, formed by placing receivers on stations. The goal is to select the best order in which these sessions can be organised to give the best possible schedule. Generally, solving large networks to optimality requires impractical computational time. This paper proposes a Tabu Search technique which provides optimal or near-optimal solutions for large networks with an acceptable amount of computational effort. Computational results for several case studies with known and unknown optimal schedules have been presented to assess the performance of the proposed technique.  相似文献   

11.
This paper is the first attempt to investigate the risk probability criterion in semi-Markov decision processes with loss rates. The goal is to find an optimal policy with the minimum risk probability that the total loss incurred during a first passage time to some target set exceeds a loss level. First, we establish the optimality equation via a successive approximation technique, and show that the value function is the unique solution to the optimality equation. Second, we give suitable conditions, under which we prove the existence of optimal policies and develop an algorithm for computing ?-optimal policies. Finally, we apply our main results to a business system.  相似文献   

12.
In this paper, we study optimal value functions of generalized semi-infinite min-max programming problems on a noncompact set. Directional derivatives and subd-ifferential characterizations of optimal value functions are given. Using these properties, we establish first order optimality conditions for unconstrained generalized semi-infinite programming problems.  相似文献   

13.
On the basis of the method of generalized Lagrange multipliers we obtain optimality conditions in the problem of tracking a given variation in regime of a distributed pipeline gas transport system with an integral quadratic quality criterion. We propose a method and an algorithm for finding optimal controlling actions. We present the results of computation of optimal controls in a homogeneous pipeline. Translated fromDinamicheskie Sistemy, Vol. 11, 1992.  相似文献   

14.
In this article, we consider a model shape optimization problem. The state variable solves an elliptic equation on a star-shaped domain, where the radius is given via a control function. First, we reformulate the problem on a fixed reference domain, where we focus on the regularity needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and use it to show that the optimal solution possesses a higher regularity, which allows for the explicit computation of the derivative of the reduced cost functional as a boundary integral. We finish the article with some second-order optimality conditions.  相似文献   

15.
In the two-stage uncapacitated facility location problem, a set of customers is served from a set of depots which receives the product from a set of plants. If a plant or depot serves a product, a fixed cost must be paid, and there are different transportation costs between plants and depots, and depots and customers. The objective is to locate plants and depots, given both sets of potential locations, such that each customer is served and the total cost is as minimal as possible. In this paper, we present a mixed integer formulation based on twice-indexed transportation variables, and perform an analysis of several Lagrangian relaxations which are obtained from it, trying to determine good lower bounds on its optimal value. Computational results are also presented which support the theoretical potential of one of the relaxations.  相似文献   

16.
郑权提出了求总极值问题的积分—水平集的概念性算法,同时给出了最优性条件.本文构造函数F(x),讨论了该函数的性质,证明求解原问题等价于求解方程F(c)=0的根.在文中给出了相应的总极值存在的最优性条件.  相似文献   

17.
This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semidefinite programming relaxations. Three case studies in optimal power flow, optimal transmission switching and capacitor placement demonstrate the benefits of the new relaxations.  相似文献   

18.
《Optimization》2012,61(4):773-800
Abstract

In this paper we study the risk-sensitive average cost criterion for continuous-time Markov decision processes in the class of all randomized Markov policies. The state space is a denumerable set, and the cost and transition rates are allowed to be unbounded. Under the suitable conditions, we establish the optimality equation of the auxiliary risk-sensitive first passage optimization problem and obtain the properties of the corresponding optimal value function. Then by a technique of constructing the appropriate approximating sequences of the cost and transition rates and employing the results on the auxiliary optimization problem, we show the existence of a solution to the risk-sensitive average optimality inequality and develop a new approach called the risk-sensitive average optimality inequality approach to prove the existence of an optimal deterministic stationary policy. Furthermore, we give some sufficient conditions for the verification of the simultaneous Doeblin condition, use a controlled birth and death system to illustrate our conditions and provide an example for which the risk-sensitive average optimality strict inequality occurs.  相似文献   

19.
Firms engaged in consumer product sales often implement a strict make-to-stock approach, applying a single price to all customers. In such systems, customers can get the product at the given price upon availability on the shelf. However, consumers can often tolerate a delay between order placement and demand satisfaction under a price discount. Recognizing this phenomenon, a supplier may consider offering a menu of delivery-price options to consumers, where longer delay-time options imply lower prices. Demands from customers willing to wait provide advance demand information to the supplier. This paper studies strategies to exploit this additional information to improve profitability and service levels. Primarily assuming that delivery times are set exogenously, we determine optimal prices and stock levels under the new delayed demand satisfaction options. In addition, we develop analytical models to characterize the system performance gains under the new demand fulfillment option.  相似文献   

20.
A new concept of duality is proposed for multiobjective linear programs. It is based on a set expansion process for the computation of optimal solutions without scalarization. The duality gap qualifications are investigated; the primal–dual balance set and level set equations are derived. It is demonstrated that the nonscalarized dual problem presents a cluster of optimal dual vectors that corresponds to a unique optimal primal vector. Comparisons are made with linear utility, minmax and minmin scalarizations. Connections to Pareto optimality are studied and relations to sensitivity and parametric programming are discussed. The ideas are illustrated by examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号