首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Lα and Lβ X‐ray fluorescence spectra of a lead metallic sheet were measured using an energy dispersive X‐ray spectrometer by changing the X‐ray tube voltage and the material of the primary filter. The Lα to Lβ intensity ratio changed from Lα: Lβ = 3: 1 at 15 kV to Lα: Lβ = 1: 1 at 50 kV depending on the X‐ray tube voltage and the filter. The scattered X‐ray spectra of an acrylic slab instead of the sample in the sample holder were measured by changing the applied voltage and the material of the primary filter. The calculated values of the Pb Lα/Lβ intensity ratio of the metallic sheet using the Shiraiwa–Fujino formula by inserting the scattered X‐ray spectra of an acrylic plate as incident X‐ray spectra and the fundamental parameters taken from the Elam database were in good agreement with the experimental ones. We conclude that we can obtain an incident X‐ray spectrum approximately by measuring the scattered X‐ray spectrum without measuring the direct incident beam. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The chemical characterisation of very small‐sized samples is often of major interest in forensic analysis, studies of artworks, particulate matter on filters, raw materials impurities, and so on, although it generally poses considerable problems owing to the difficulty of obtaining precise and accurate results. This study was undertaken to develop a set of methods for the chemical characterisation of very small‐sized samples by wavelength‐dispersive X‐ray fluorescence. To conduct the study, sample preparation (as beads and pellets) and measurement conditions were optimised to reach the necessary detection and quantification limits and to obtain the appropriate measurement uncertainty for characterising the types of materials involved. The measurements were validated by using reference materials. Three test methods were developed. In two methods, the samples were prepared in the form of beads (one method being for geological materials and the other for the analysis of nongeological materials such as particulate matter on filters, glasses, frits, and ceramic glazes and pigments). In the third method, the samples were prepared in the form of pellets for the analysis of volatile elements in geological materials. In the three methods, detection limits, quantification limits and measurement uncertainties were obtained similar to those found when a bead or pellet is prepared by the usual methods from 0.5 g sample. However, in this study, sample size was between 30 and 40 times smaller in the case of beads and 100 times smaller in the case of pellets, thus broadening the range of possible wavelength‐dispersive X‐ray fluorescence applications in the chemical characterisation of materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Novel confocal X‐ray fluorescence (XRF) spectrometer was designed and constructed for 3D analysis of elementary composition in the surface layer of spatially extended objects having unlimited chemical composition and geometrical shape. The main elements of the XRF device were mounted on a moving frame of a commercial 3D printer. The XRF unit consists of a silicon drift detector and a low‐power transmission‐type X‐ray tube. Both the excitation and secondary X‐ray beams were formed and regulated by simple collimator systems in order to create a macro confocal measuring setup. The spatial accuracy of the mechanical stages of the 3D printer achieved was less than 5 μm at 100‐μm step‐size. The diameter of the focal spot of the confocal measuring arrangement was between 1.5 and 2.0 mm. The alignment of the excitation and secondary X‐ray beams and the selection of the measuring spot on the sample surface were ensured by two laser beams and a digital microscope for visualization of the irradiated spot. The elements of the optical system together with the XRF spectrometer were mounted on the horizontal arm of the 3D printer, which mechanical design is capable of synchronized moving the full spectroscopic device within vertical directions. Analytical capability and the 3D spatial resolution of the confocal spectrometer were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Kidney stone is the most painful and prevalent urological disorder of the urinary system throughout the world. Thus, analysis of kidney stones is an integral part in the evaluation of patents having stone disease. Spectroscopic investigations of stones provide an idea about the pathogenesis of stones for its better cure and treatment. Hence, the present work targets multispectroscopic investigations on kidney stones using Fourier transform infrared (FTIR) and wave dispersive X‐ray fluorescence (WD‐XRF) spectroscopy which are the most useful analytical methods for the purpose of bio‐medical diagnostics. In the present study, FTIR spectral method is used to investigate the chemical composition and classification of kidney stones. The multicomponents of kidney stones such as calcium oxalate, hydroxyl apatite, phosphates, carbonates, and struvite were investigated and studied. Qualitative and quantitative determination of major and trace elements present in the kidney stones was performed employing WD‐XRF spectroscopy. The wide range of elements determined in the kidney stones were calcium (Ca), magnesium (Mg), phosphorous (P), sodium (Na), potassium (K), chlorine (Cl), sulfur (S), silicon (Si), iodine (I), titanium (Ti), iron (Fe), ruthenium (Ru), zinc (Zn), aluminum (Al), strontium (Sr), nickel (Ni), copper (Cu), and bromine (Br). For the first time, ruthenium was detected in kidney stone samples employing WD‐XRF in very low concentration. Our results revealed that the presence and relative concentrations of trace elements in different kinds of stones are different and depend on the stone types. From the experiments carried out on kidney stones for trace elemental detection, it was found that WD‐XRF is a robust analytical tool that can be useful for the diagnosis of urological disorders. We have also compared our findings with the results reported using XRF technique. The results obtained in the present paper show interesting prospects for FTIR and WD‐XRF spectrometry in nephrolithiasis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

6.
7.
Samples with non‐planar surfaces present challenges for X‐ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet.  相似文献   

8.
Pb can pass through the food chain via plants and threaten human health, which has attracted widespread attention. Changes in Pb speciation affect its bioavailability in soils and water. However, whether organic ligands can change the uptake and mobility of Pb in plants and increase or decrease Pb bioavailability remains uncertain. To reveal the roles of organic and inorganic Pb in Pb metabolism in plants, the localization and speciation changes of Pb in Arabidopsis thaliana plants grown in organic and inorganic Pb were characterized by synchrotron radiation micro X‐ray fluorescence and X‐ray absorption near‐edge structure, respectively. These results demonstrated that Arabidopsis absorbed more Pb from Pb(NO3)2 than Pb(CH3COO)2 at the same exposure concentration. A higher percentage of Pb‐citrate was found in Arabidopsis exposed to inorganic Pb solution, which suggested that Pb‐citrate was the main complex for root‐to‐shoot transportation in Arabidopsis exposed to inorganic Pb solutions. Pb complexed with the organic ligand CH3COO? significantly inhibited primary root growth and lateral root development, while, at the same time, Pb was blocked by root hairs, which represented another way to reduce Pb absorption and protect the plant from biotoxicity.  相似文献   

9.
A characterization of ashes obtained by thermal treatments on greenhouse crops plant biomass residues is presented. The chemical analysis, by X‐ray fluorescence (wavelength‐dispersive X‐ray fluorescence), and phase analysis, by X‐ray diffraction, of the resultant ashes are reported. Thermal treatments of selected samples of these residues increase the relative amounts of inorganic Mg, Si, P, and S in the ashes, being these amounts as high as increasing temperature. As an opposite effect, Na, Cl, and K contents decrease as increasing temperature by a volatilization process of the chlorides, as confirmed by X‐ray diffraction. The crystalline phase analysis of the ashes demonstrates the formation of inorganic constituents of the biomass, including alkaline chlorides and calcium salts (calcite, anhydrite, and apatite). Progressive thermal treatments induce the formation of new silicate phases (akermanite and grossularite) and silica (α‐quartz and cristobalite). Furthermore, the particle size of the starting biomass samples does not influence the evolution of the crystalline phases by thermal treatments. In contrast, a previous leaching using water and subsequent heating at 1,000 °C produces the formation of periclase (MgO), lime (CaO), and the silicate gehlenite, without the presence of anhydrite. This study is interesting for future investigations on the residues as a profitable biomass source for energy production and sustainable large‐scale management. Some potential applications of the resultant ashes can be proposed.  相似文献   

10.
Elemental distribution images acquired by imaging X‐ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real‐time non‐negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi‐modal α+β Ti‐6Al‐6V‐2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and β, were in superposition. The findings and interpretation of the NMF results were confirmed by Monte Carlo simulation of the layered alloy system. Furthermore, it is shown how the simultaneous factorization of several stacks of elemental distribution images provides uniform basis vectors and consequently simplifies the interpretation of the representation.  相似文献   

11.
Recently, a radically new synchrotron radiation‐based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non‐contact laser‐based sample manipulation with synchrotron radiation confocal X‐ray fluorescence (XRF) microimaging for the first time at ESRF‐ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF‐related challenges are reported. In general, the applicability of the OT‐based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi‐elemental analysis is of relevance at the (sub)micrometre spatial resolution level.  相似文献   

12.
13.
The integration of microfluidic devices with micro X‐ray fluorescence (micro‐XRF) spectrometry offers a new approach for the direct characterization of liquid materials. A sample presentation method based on use of small volumes (<5 µl) of liquid contained in an XRF‐compatible device has been developed. In this feasibility study, a prototype chip was constructed, and its suitability for XRF analysis of liquids was evaluated, along with that of a commercially produced microfluidic device. Each of the chips had an analytical chamber which contained approximately 1 µl of sample when the device was filled using a pipette. The performance of the chips was assessed using micro‐XRF and high resolution monochromatic wavelength dispersive X‐ray fluorescence, a method that provides highly selective and sensitive detection of actinides. The intended application of the device developed in this study is for measurement of Pu in spent nuclear fuel. Aqueous solutions and a synthetic spent fuel matrix were used to evaluate the devices. Sr, which has its Kα line energy close to the Pu Lα line at 14.2 keV, was utilized as a surrogate for Pu because of reduced handling risks. Between and within chip repeatability were studied, along with linearity of response and accuracy. The limit of detection for Sr determination in the chip is estimated at 5 ng/µl (ppm). This work demonstrates the applicability of microfluidic sample preparation to liquid characterization by XRF, and provides a basis for further development of this approach for elemental analysis within a range of sample types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Sponge endemic species inhabit the Lake Baikal from the ancient times. Because the sponges are the biological filters of the Baikal water and they contribute greatly to silicon circulation in the lake, it is crucial to analyze their composition. Only a few publications report the analytical data concerning the element composition of Lake Baikal sponges. However, the analytical data were mainly obtained by destructive methods. No data on the concentrations of some alkaline and volatile elements are available so far. This article describes the application of wavelength dispersive X‐ray fluorescence spectrometry to study the sponges of Lubomirskia baicalensis, Baikalospongia bacillifera, and Baikalospongia recta species collected at the littoral part of the Beryozovy Cape in the Southern Baikal. The concentrations of 19 elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Ba have been determined. In this article, we discuss the problem of selecting calibration samples for wavelength dispersive X‐ray fluorescence spectrometry, because appropriate reference samples are not available. The synthetic specimens, prepared by mixing plant certified reference materials and silicon dioxide in certain proportions, were proposed for calibration. The compositions of sponges cleaned from mineral particles and symbiotic organisms, as well as unwashed sponges, have been compared. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper discusses a new method of background estimation in the energy‐dispersive X‐ray fluorescence (EDXRF) analysis, which is based on Fourier Transform (in this paper, we call it Fourier Transform background estimation method). Compared with the Sensitive Nonlinear Iterative Peak method, the new method has the feature of FWHM independence. It has been proved that a background can be estimated automatically and accurately by the new method in the synthesized spectrum and the spectra from measurement. Fourier Transform background estimation method can estimate the background accurately in the EDXRF spectrum using an X‐ray tube source. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Caloptropis procera (Oshar) is a desert plant that did not receive much attention from the science community. The objective of this study was to investigate the elemental composition of the different parts of the plant using an X‐ray analytical microscope, to identify the elements naturally present in the plant and in the future detect the presence of any contaminants absorbed by the plants from the surrounding environment. Stalks, leaves and flowers from three Oshar plants were qualitatively and quantitatively analyzed. Leaves were scanned to establish the elemental spatial distribution within individual leaves. Subsequently, parts of the plants were dried, crushed and pulverized, then analyzed to determine elemental concentrations. The major elements present throughout the plant were Cl, K and Ca with varied concentrations. Other elements (Mg, Si, P, Fe, Sr, Mn and Br) are present in the leaf with various low concentrations of <5%. Major, minor and trace elements present in the various plant parts were determined. The outcome of this study will be used as a pilot for further investigations pertaining to the utilization of the Oshar plant for environmental cleaning purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Confocal Raman microspectroscopy and portable X‐ray fluorescence spectroscopy were used nondestructively to characterise 18 intact jade artifacts from the Cemetery of the Ying State in Pingdingshan, Henan Province, China. These jade artifacts date from the early to the middle of the Western Zhou Period (the mid‐11th to the mid‐9th century BC). Thirteen jade artifacts made of tremolite and two jade artifacts made of actinolite were discriminated from each other by their hydroxyl stretching modes, and a malachite pendant, a muscovite dagger‐axe, and a crystal pendant were also identified. Black graphite was analysed in three jade artifacts composed of tremolite, and the mineralization temperatures were estimated and compared. A red powder was found on the surface of all of the jade artifacts, and this was found to be cinnabar (HgS), which is thought to have been added to the tomb environments during burial ceremonies. The chemical compositions and the possible provenances of the jade artifacts are briefly discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
High‐energy X‐ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron‐based technique used to quantitatively reconstruct the three‐dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub‐100 nm size regimes – a size routinely achievable by chemical synthesis – despite the spatial resolution of the BCDI technique being 20–30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60–65 nm were investigated with BCDI measurement at beamline 34‐ID‐C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre‐requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.  相似文献   

20.
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号