首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During respiration, particles suspended in the air are inhaled and unless cleared by airway defences they can remain and affect lung health. Their size precludes the use of standard imaging modalities so we have developed synchrotron phase-contrast X-ray imaging (PCXI) methods to non-invasively monitor the behaviour of individual particles in live mouse airways. In this study we used these techniques to examine post-deposition particle behaviour in the trachea. PCXI was used to monitor the deposition and subsequent behaviour of particles of quarry dust and lead ore; fibres of asbestos and fibreglass; and hollow glass micro-spheres. Visibility was examined in vitro and ex vivo to avoid the complicating effects of surrounding tissue and respiratory or cardiac motion. Particle behaviour was then examined after deposition onto the tracheal airway surfaces of live mice. Each particle and fibre looked and behaved differently on the airway surface. Particles lodged on the airway shortly after deposition, and the rate at which this occurred was dependent on the particle type and size. After the live-imaging experiments, excised airway samples were examined using light and electron microscopy. Evidence of particle capture into the airway surface fluids and the epithelial cell layer was found. PCXI is a valuable tool for examining post-deposition particulate behaviour in the tracheal airway. These first indications that the interaction between airways and individual particles may depend on the particle type and size should provide a novel approach to studying the early effects of respired particles on airway health.  相似文献   

2.
Fine non‐biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non‐invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase‐contrast X‐ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non‐fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non‐invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.  相似文献   

3.
To assess potential therapies for respiratory diseases in which mucociliary transit (MCT) is impaired, such as cystic fibrosis and primary ciliary dyskinesia, a novel and non‐invasive MCT quantification method has been developed in which the transit rate and behaviour of individual micrometre‐sized deposited particles are measured in live mice using synchrotron phase‐contrast X‐ray imaging. Particle clearance by MCT is known to be a two‐phase process that occurs over a period of minutes to days. Previous studies have assessed MCT in the fast‐clearance phase, ~20 min after marker particle dosing. The aim of this study was to non‐invasively image changes in particle presence and MCT during the slow‐clearance phase, and simultaneously determine whether repeat synchrotron X‐ray imaging of mice was feasible over periods of 3, 9 and 25 h. All mice tolerated the repeat imaging procedure with no adverse effects. Quantitative image analysis revealed that the particle MCT rate and the number of particles present in the airway both decreased with time. This study successfully demonstrated for the first time that longitudinal synchrotron X‐ray imaging studies are possible in live small animals, provided appropriate animal handling techniques are used and care is taken to reduce the delivered radiation dose.  相似文献   

4.
Propagation‐based phase‐contrast X‐ray imaging (PB‐PCXI) using synchrotron radiation has achieved high‐resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB‐PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source‐to‐sample distances of over 137 m. This study aimed to measure the capabilities of PB‐PCXI on IMBL for imaging small animal lungs to study lung disease. The feasibility of combining this technique with computed tomography for three‐dimensional imaging and X‐ray velocimetry for studies of airflow and non‐invasive lung function testing was also investigated. Detailed analysis of the role of the effective source size and sample‐to‐detector distance on lung image contrast was undertaken as well as phase retrieval for sample volume analysis. Results showed that PB‐PCXI of lung phantoms and mouse lungs produced high‐contrast images, with successful computed tomography and velocimetry also being carried out, suggesting that live animal lung imaging will also be feasible at the IMBL.  相似文献   

5.
We study the slowing down of a particle beam passing through the dusty plasma with power‐law κ‐distributions. Three plasma components, electrons, ions, and dust particles, can have a different κ‐parameter. By using Fokker‐Planck theory, the deceleration factor and slowing down time are derived and expressed by a hyper‐geometric κ‐function. Numerically, we study the slowing down property of an electron beam in the κ‐distributed dusty plasma. We show that the slowing down in the plasma depends strongly on the κ‐parameters of plasma components, and dust particles play a dominant role in the deceleration effects. We also show dependence of the slowing down on mass and charge of a dust particle in the kappa‐distributed plasma.  相似文献   

6.
In this paper, a self‐consistent numerical model describing the behaviour of plasma around isolated highly charged dust particles with different shapes of rotation figures is presented. Dust particles in the form of a sphere, oblate ellipsoids (disk‐like particles), and elongated ellipsoids (rod‐like particles) are considered in the presence of an external electric field. Using the developed model, self‐consistent distributions of a space charge and plasma potential are obtained around non‐spherical dust particles. These distributions are carefully analysed by decomposing them in a series of Legendre polynomials. Decompositions of these distributions are compared with particles of different geometry. In addition, for different geometries of dust particles, the dependencies of the charge of a dust particle on geometry in the absence of an external field are investigated.  相似文献   

7.
This in vitro study investigated electrically charging effect on the deposition of inhaled workplace anthropogenic pollutant particles (APP) in a hollow throat cast model. Many occupational lung diseases are associated with exposure to workplace dust particles and other pollutants. Since the human throat is an effective filter, this study devised a novel idea of charging particles, and studying their deposition in the throat. Simulated workplace aerosol particles were generated from a commercially available nebulizer, and charged by a corona charger. Charged and uncharged particles were allowed to pass through a polyester resin cast of cadaver based throat, a replicate of a human oropharyngeal region. The aerosol particles' size and charge distribution were characterized by an Electronic Single Particle Aerodynamic Relaxation Time (ESPART) analyzer before and after passing the throat cast. The ESPART operates on the principle of Laser Doppler Velocimetry to measure simultaneously aerodynamic diameter and electrostatic charge on a single particle basis and in real time. The study results revealed that electrically charging increased agglomeration of smaller particles and increased deposition. Deposition of charged particles increased with increasing particle size which can be explained as the effect of inertial impaction.  相似文献   

8.
A multi‐electrode approach is proposed for on‐line characterisation of particle size and shape in dilute particulate suspensions. Based on an electrozone principle, the approach uses four electrodes in a tube rather than two electrodes across an aperture employed in conventional methods. The outer two electrodes are used for current injection, while the inner two electrodes yield voltage measurement. A sensor designed in this way can reduce errors of false counts and oversizing that may occur in conventional methods, thus providing more accurate particle sizing. It is also possible to use the signal slope along with signal peak for particle size and shape characterisation. Both theoretical modelling and experiments were conducted, showing that particle aspect ratio along with particle diameter can be obtained, for example, for cylindrical particles.  相似文献   

9.
Using a two‐crystal‐interferometer‐based phase‐contrast X‐ray imaging system, the portal vein, capillary vessel area and hepatic vein of live rats were revealed sequentially by injecting physiological saline via the portal vein. Vessels greater than 0.06 mm in diameter were clearly shown with low levels of X‐rays (552 µGy). This suggests that in vivo vessel imaging of small animals can be performed as conventional angiography without the side effects of the presently used iodine contrast agents.  相似文献   

10.
Pulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosan using supercritical‐fluid‐assisted spray drying. The formulations are characterized in terms of morphology, particle‐size distribution, in vitro aerodynamic particle pulmonary distribution, and glutathione‐S‐transferase assay. It is demonstrated that ibuprofen‐loaded nanoparticles can be successfully incorporated into microspheres with adequate aerodynamic properties, mass median aerodynamic diameter (1.86–3.83 μm), and fine particle fraction (28%–45%), for deposition into the deep lung. The (S)‐ibuprofen dry powder formulations show enhanced solubility, high swelling behavior and a sustained drug release at physiologic pH. Also, POxylated polyureas decrease the (S)‐ibuprofen toxic effect on cancer cellular growth. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assays show no significant cytotoxicity on the metabolic activity of human lung adenocarcinoma ephithelial (A549) cell line for the lowest concentration (1 × 10?3 m ), even for longer periods of contact with the cells (up to 120 h), and in the normal human dermal fibroblasts cell line the toxic effect is also reduced.  相似文献   

11.
The nonlinear dust‐ion‐acoustic (DIA) solitary structures have been studied in a dusty plasma, including the Cairns‐Gurevich distribution for electrons, both negative and positive ions, and immobile opposite polarity dust grains. The external magnetic field directed along the z‐axis is considered. By using the standard reductive perturbation technique and the hydrodynamics model for the ion fluid, the modified Zakharov–Kuznetsov equation was derived for small but finite amplitude waves and was provided the solitary wave solution for the parameters relevant. Using the appropriate independent variable, we could find the modified Korteweg–de Vries equation. By plotting some figures, we have discussed and emphasized how the different plasma values, such as the trapping parameter, the positive (or negative) dust number density, the non‐thermal electron parameter, and the ion cyclotron frequency, can influence the solitary wave structures. In addition, using the bifurcation theory of planar dynamical systems, we have extracted the centre and saddle points and illustrated the phase portrait of such a system for some particular plasma parameters. Finally, we have graphically investigated the behaviour of the solitary energy wave by changing the plasma values as well as by calculating the instability criterion; we have also discussed the growth rate of the solitary waves. The results could be useful for studying the physical mechanism of nonlinear propagation of DIA solitary waves in laboratory and space plasmas where non‐thermal electrons, pair‐ions, and dust particles can exist.  相似文献   

12.
A numerical analysis of polydispersed glass particles interacting with a confined turbulent bluff‐body flow was performed by combining the finite‐volume method for the gaseous flow with a mesh‐free Lagrangian approach for the particulate flow. Three turbulence‐closure models, namely the Reynolds‐stress, the standard k‐ϵ, and the nonlinear k‐ϵ models, were first comparatively studied for the single‐phase flow. The second‐moment Reynolds‐stress model was then selected for the prediction of the turbulent gaseous flow in a gas‐particle system, where an improved eddy‐interaction model was used to predict turbulence‐induced particle dispersion. The interaction between the two phases was accounted for through coupling source terms. Numerical predictions of two‐phase mean and fluctuating velocities for particle sizes ranging from 15 to 115 μm were compared with corresponding experimental data. Reasonably good agreement was achieved for the mean properties of both the gaseous and particulate flows.  相似文献   

13.
14.
The combination of micro‐Raman spectroscopy and an advanced universal fibre tester (UFT) made it possible to probe at the nanoscale (through monitoring the modification of chemical bonds) the change in conformation (α‐helix, β‐sheet, etc.), macromolecular fibroin chain orientation and coupling during the application of stress, quantitatively. Different single fibres of silkworms (Bombyx mori, Gonometa rufobrunea, Gonometa postica) and a spider (Nephila madagascariensis) were tested in a dry environment and compared with the behaviour of keratin fibre. As observed previously for single keratin fibres, a direct relationship is observed between nano‐ and micro‐mechanical tensile behaviour. The phase transition plateau, well defined for some pristine B. mori fibres, disappears in degummed fibres, which indicates a structural modification and increasing disorder with chemical treatments. Stress‐controlled micro‐Raman analysis shows that a few modes involving CH2 and/or amide groups of β‐conformation chains undergo a wavenumber softening during the elastic behaviour (∼0–3%), although most of the modes are not affected. A different behaviour is observed for modes associated with ‘ordered’ and ‘disordered’ β‐sheets and helical chains. Larger softening is observed for lattice modes with increasing stress/strain, as expected. Structural changes and relationships with mechanical behaviour are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Histological sections of a patient affected by an important respiratory disease were analysed firstly by optical microscope(OM)—crossed polarisers—to identify the presence of incorporated inorganic particles, with particular attention to the fibrous ones. Then, the particles/fibres that were found were studied both with micro‐Raman spectroscopy and variable‐pressure scanning electron microscopy with energy‐dispersive spectroscopy (VP‐SEM/EDS). The two techniques allowed the in situ characterisation of the inorganic phases without disintegration of the organic matter. Micro‐Raman spectroscopy was able to identify the vibrating chemical groups of the mineral phase associated with the inorganic grain while the crystalline structure was preserved by the biological system. The VP‐SEM/EDS characterisation, defining the elemental chemical composition of the analysed particle/fibre, allowed confirmation of the mineral phase deducible from spectroscopic data or its identification with certainty when the spectroscopic data were not exhaustive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A kinetic formulation is developed to investigate low‐frequency dust ion acoustic waves (DIAWs) and dust acoustic waves (DAWs) as well as numerically for a four‐component, collisionless, unmagnetized dusty plasma, using the linearized Vlasov–Poisson model for species obeying the Maxwellian distribution. In particular, the dynamics of low‐frequency DIAWs is investigated by considering two cases. In the first case, ions and positive dust particles are assumed to be dynamically adiabatic while the negative dust particles are static in the background. In second case, the ions are taken adiabatic, while both positive and negative dust particles are static in the background. For DAWs, the ions are assumed to be isothermal, while both positive and negative dust species are considered adiabatic. Electrons are assumed to be isothermal in all cases. The linear characteristics and Landau damping rates for DIAWs and DAWs are investigated with effects of the dust particle concentrations and different temperature ratios. It is noted that for higher values of positive dust concentration, DIAWs (DAWs) are less (more) damped. It is also observed that the damping rate increases (decreases) as Ti approaches Te for DIAWs (DAWs). It is worth adding here that the theoretical results presented here are supported by numerical analyses and illustrations. The relevance of the study to laboratory and cosmic plasmas is also pointed out.  相似文献   

17.
In this study, the properties of ion‐ and positron‐acoustic solitons are investigated in a magnetized multi‐component plasma system consisting of warm fluid ions, warm fluid positrons, q‐non‐extensive distributed positrons, q‐non‐extensive distributed electrons, and immobile dust particles. To drive the Korteweg–de Vries (KdV) equation, the reductive perturbation method is used. The effects of the ratio of the density of positrons to ions, the temperature of the positrons, and ions to electrons, the non‐extensivity parameters qe and qp , and the angle of the propagation of the wave with the magnetic field on the potential of ion‐ and positron‐acoustic solitons are also studied. The present investigation is applicable to solitons in fusion plasmas in the edge of tokamak.  相似文献   

18.
In this study, a detailed investigation of the problem of sheath is presented using the fluid model in a magnetized three‐component dusty plasma system comprising positive ions, dust grains with variable charge and q‐non‐extensive electrons (i.e., the electrons evolve far away from their Maxwellian thermodynamic equilibrium [q = 1]). The effects of q‐non‐extensivity parameter on the plasma sheath parameters are studied numerically. A significant change is observed in the quantities characterizing the sheath with the presence of the super‐extensive electrons (q < 1) and sub‐extensive electrons (q > 1). In addition, based on the orbital motion limited theory, by taking various forces acting on the dust particle into consideration, the dynamics of the dust located within the sheath, that is, the dust grain charging inside the sheath, is examined under different values of q. It is found that the q‐non‐extensivity has affected significantly the dynamics and the charging process of the dust grains in the sheath.  相似文献   

19.
The possibility of the formation of dust structures in cryogenic environment at 4.2‐77 K was proved experimentally in the previous researches of cryogenic complex (dusty) plasma [1–5]. It was revealed from the experiments, among others, that the dust structures with high concentration of dust particles can be formed, in which interparticle distance is comparable with particle size ‐ super dense dusty plasma structures. Such structures had exotic properties such as globular (spherical) form, free boundaries, etc. In the present work new results on the experimental investigations of new phenomenon of spheroidizing ‐ process of the dust structure transition to compact globular shape at cryogenic temperatures ‐ were presented. Possible nature of such phenomenon is discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Experiments and particle‐based kinetic simulations were performed to obtain the equilibrium levitation height of dust particles in plane parallel electrode discharges in low pressure argon gas, established by combined RF and DC excitation. The computed values were compared to experimental data. The good overall agreement of the simulation results and the experimental data verifies our gas discharge, dust charging, as well as dust force balance models. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号