首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydroxyapatite (HA), beta‐tricalcium phosphate and bioactive glasses are commonly used as reabsorbable biomaterials, mainly in orthopaedics and dentistry. The performance of each material depends on many factors, in particular, on their chemical and phase composition, microstructure, granule size and pore volume. For this reason, it is important to have a full characterization that allows correlating these properties with the material biological behaviour. In this work, three commercial samples of materials currently used in dentistry as bone substitutes were characterized. Granules corresponding to bovine and synthetic HA and bioactive glass 45S5 type were studied by scanning electron microscopy, conventional and synchrotron radiation X‐ray diffraction and X‐ray fluorescence. The specific surface area was also obtained by the Brunauer, Emmett and Teller method. We observed that Ca/P molar ratios for both HAs are higher than the value corresponding to the stoichiometric HA. The coherent domain obtained for the bovine HA is larger along the c axis crystal direction, and it is around 15 times lower than the value corresponding to the synthetic HA. The specific surface area for the bovine HA is one of the highest values reported in literature. Low amounts of crystalline CaO were observed only for the synthetic HA sample. Crystalline combeite and wollastonite were detected for the bioactive glass sample and quantified by using rutile as internal standard. The relation between the physico‐chemical characterization performed in this work and the potential biological response of the materials is discussed in terms of the information available in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Archaeological finds of Neolithic to Iron Age pottery show clay potsherds characterized by red cord‐markings. The items date back from 5500 to 1500 B.P. To better understand temporal changes in the provenance of raw‐material sources, and the nature of materials used in the red colorant and ceramic bodies, micro‐Raman spectroscopy, X‐ray diffraction analysis (XRD), and micro X‐ray florescence spectroscopy (μXRF) were applied to 29 red‐coated potsherd samples found at twelve archaeological sites across Taiwan. The techniques identified the chemical and mineralogical composition of the red coatings and ceramic bodies as well as the production methods of ancient potters. Eighteen mineral phases were identified from the Raman spectra, including hematite, α‐quartz, and anatase. Feldspar, rutile, pyroxenes, calcite, gypsum, amorphous carbon, and graphite were also detected. XRD measurements, and μXRF analyses were used as complementary techniques to obtain mineral and chemical compositions. Hematite, anatase, calcite, plagioclase feldspar, and illite were present in potsherds, suggesting pottery produced from illitic clays fired at less than 850 °C under oxidizing conditions. Results further suggest that raw materials were sourced from or near local volcanic rock areas, and more broadly from metamorphic or sedimentary rocks and clays. Chemically, raw materials used for red coatings are different to those of the ceramic bodies. Objects from most sites used the same raw material sources; however, some sites contain objects made from changing sources over time. Pot coatings exhibit polygonal cracks, and loosened cementation strongly suggesting that finely processed moist clays were fired to a biscuit form with no second stage firing process. The non‐destructive Raman experiments identified and characterized mineral phases, which helped understand manufacturing techniques. Overall the multi‐technique approach gave extensive information on the finds, helping to differentiate raw material sources and production technologies. This approach is an important and effective method for investigating archaeological finds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Implant healing was studied with regard to the mineralization of the implant-tissue interface. Titanium discs were surface-modified and implanted in rat tibia for 4 weeks. After implantation, the bone was embedded in resin and cross sections of bone and implant were made using a low speed saw equipped with a diamond wafering blade. The sections were analyzed with imaging TOF-SIMS using a Bi3+ cluster ion source. This ion source has recently been shown to enable identification of hydroxyapatite (HA) fragments in bone samples. The area within 40 μm from the implant surface was selected for analysis, corresponding to bone-implant interface, from which positive spectra were recorded. In conclusion, differences were observed between the implants tested regarding signal intensity of fragments specific for HA. Coating of the implants with magnesium and porosity were shown to influence the mineral content of the bone-implant interface. This technique might be useful for biocompatibility assessment and for studying the mineralization process at implant surfaces.  相似文献   

4.
Plasmonic gold nanostars offer a new platform for surface‐enhanced Raman scattering (SERS). However, due to the presence of organic surfactant on the nanoparticles, SERS characterization and application of nanostar ensembles in solution have been challenging. Here, we applied our newly developed surfactant‐free nanostars for SERS characterization and application. The SERS enhancement factors (EF) of silver spheres, gold spheres and nanostars of similar sizes and concentration were compared. Under 785 nm excitation, nanostars and silver spheres have similar EF, and both are much stronger than gold spheres. Having plasmon matching the incident energy and multiple ‘hot spots’ on the branches bring forth strong SERS response without the need to aggregate. Intracellular detection of silica‐coated SERS‐encoded nanostars was also demonstrated in breast cancer cells. The non‐aggregated field enhancement makes the gold nanostar ensemble a promising agent for SERS bioapplications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Discovery of new materials drives the deployment of new technologies. Complex technological requirements demand precisely tailored material functionalities, and materials scientists are driven to search for these new materials in compositionally complex and often non‐equilibrium spaces containing three, four or more elements. The phase behavior of these high‐order composition spaces is mostly unknown and unexplored. High‐throughput methods can offer strategies for efficiently searching complex and multi‐dimensional material genomes for these much needed new materials and can also suggest a processing pathway for synthesizing them. However, high‐throughput structural characterization is still relatively under‐developed for rapid material discovery. Here, a synchrotron X‐ray diffraction and fluorescence experiment for rapid measurement of both X‐ray powder patterns and compositions for an array of samples in a material library is presented. The experiment is capable of measuring more than 5000 samples per day, as demonstrated by the acquisition of high‐quality powder patterns in a bismuth–vanadium–iron oxide composition library. A detailed discussion of the scattering geometry and its ability to be tailored for different material systems is provided, with specific attention given to the characterization of fiber textured thin films. The described prototype facility is capable of meeting the structural characterization needs for the first generation of high‐throughput material genomic searches.  相似文献   

6.
Human bone mineral was studied using solid-state 31P NMR with cross-polarization (CP) from protons. The CP efficiency was determined for trabecular and cortical bone tissue from human adults and compared with synthetic mineral standards. The study shows the similarity between carbonatoapatite of type B and bone mineral as shown by their CP behaviour. The method can be used for the characterization of synthetic apatite-based implant materials.  相似文献   

7.
The effects of different thickness of hydroxyapatite (HA) coatings on bone stress distribution near the dental implant-bone interface are very important factors for the HA-coated dental implant design and clinical application. By means of finite element analysis (FEA), the bone stress distributions near the dental implant coated with different thicknesses from 0 to 200 μm were calculated and analyzed under the 200 N chewing load. In all cases, the maximal von Mises stresses in the bone are at the positions near the neck of dental implant on the lingual side, and decrease with the increase of the HA coatings thickness. The HA coatings weaken the stress concentration and improve the biomechanical property in the bone, however, in HA coatings thickness range of 60-120 μm, the distinctions of that benefit are not obvious. In addition, considering the technical reason of HA coatings, we conclude that thickness of HA coatings range from 60 to 120 μm would be the better choice for clinical application.  相似文献   

8.
Calcification is a complex process implying numerous proteins acting as nucleators, ion transporters and crystal growth regulators. Several proteins impair mineralization, such as fetuin and osteocalcin [(bone Gla protein), BGP]. We have evaluated their effets on the biomimetic calcification of carboxymethylated poly(2‐hydroxyethyl methacrylate). Polymer pellets were incubated in synthetic body fluid for 4 days at 37 °C to induce nucleation. They were transferred for 11 days in a fresh medium containing fetuin (5 mg/ml) or BGP (1 mg/ml) or a combination of boths. Pellets were examined by scanning and transmission electron microscopy. Detection of proteins was done by immunogold and Raman microspectroscopy. Calcospherites were dissolved, Ca and P were dosed. BGP did not modify the amount of Ca P or the Ca/P ratio, but the mean size of calcospherites was two times larger than controls. Fetuin reduced the number of calcospherites and the amount of Ca P but increased the Ca/P ratio. Ca P deposition was reduced on pellets incubated with both proteins, and calcospherites appeared considerably smaller. Immunogold and Raman spectroscopy identified both proteins adsorbed on hydroxyapatite (HA) tablets. Noncollagenous proteins control HA crystal growth in a different manner. The interaction between fetuin and BGP reduced the amount of calcified material deposited but also affected the morphology of the calcospherites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of the work was to develop a Monte Carlo (MC) method and combine it with micro‐beam X‐ray fluorescence (XRF) technique for determination of chemical composition of individual particles. A collection of glass micro‐spheres, made of NIST (National Institute of Standards and Technoly) K3089 material of known chemical composition, with diameters in the range of 25–45 µm was investigated. The micro‐spheres were measured in a scanning micro‐beam XRF spectrometer utilising X‐ray tube as a source of primary radiation. Results obtained for low Z elements showed high dependence on particle size. It was found that the root mean square of concentration uncertainty, for the all elements present in the particle, increases with growing sample size. More accurate results were obtained for high Z elements such as Fe–Pb, as compared to others. The elemental percentage uncertainty did not exceed 14% for any particular sample and 6% for the whole group of the measured micro‐spheres as an average. Results obtained by the Monte Carlo method were compared with other analytical approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The events at the hydroxyapatite implant material/tissue interface following electromagnetic stimulation were studied in the rabbit. Two kinds of hydroxyapatite were used: natural (NA) and synthetic (HA) both with a grain size of <50 microm. Bone defects, artificially created in rabbit tibiae, were filled with the material examined. One group of animals was exposed immediately after surgery and every 12h thereafter to 30-min treatments with electromagnetic fields (PEMFs). A second group was used as a control (untreated). Two and 4 weeks after implantation, animals were sacrificed and bone samples processed for LM, TEM and SEM using a backscatter electron detector for the evaluation of bone growth. This study indicates that HA has more osteoconductivity than NA, and shows that PEMF-treatment results in a benefit in accelerating bone formation at early time periods.  相似文献   

11.
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic‐scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high‐energy X‐ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X‐ray path while implementing low‐Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X‐ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high‐energy X‐ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic‐scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.  相似文献   

12.
Fine non‐biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non‐invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase‐contrast X‐ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non‐fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non‐invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.  相似文献   

13.
《Composite Interfaces》2013,20(5-7):551-558
Hydroxyapatite (HA) being the main mineral constituent of human hard tissues is highly bioactive. Good chemical bonds can be generated between HA and natural bone. However, the low strength and inherent brittleness of HA restrict its application usually to non-load-bearing conditions. In this work, production of a new kind of HA–ZrO2 composite by hot-press sintering method is described. Bioglass which has been widely used in reconstruction of damaged or diseased tissues was added into HA–ZrO2 composites. Comparing with pure HA ceramic, this type of composite possesses better mechanical strength and retains the bioactivity of HA as well. The liquid phase generated by bioglass has been effective in improving the sintering process of HA–ZrO2 composites. The phase composition of HA composite was characterized by XRD and their fracture surfaces were observed by SEM. The XRD results show that introducing a small amount of bioglass into HA–ZrO2 composite cannot enhance decomposition of HA. The SEM images show that there were fewer pores on the fracture surfaces of HA–ZrO2–bioglass composite than in the HA–ZrO2 composite. The flexural strength and toughness of HA–ZrO2 composite containing 2 wt% bioglass were 157 MPa and 1.63 MPa·m1/2, respectively.  相似文献   

14.
Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling.  相似文献   

15.
A recently developed variant of spatially offset Raman spectroscopy (SORS) for the non‐invasive analysis of thin painted layers, micro‐SORS, has been applied, for the first time, to real objects of Cultural Heritage – namely painted sculptures and plasters. Thin layers of paint originating from multiple restoration processes often applied over many centuries have been analysed non‐destructively using micro‐SORS to depths inaccessible to, or unresolvable into separate layers, by conventional confocal Raman microscopy. The concept has been demonstrated on several artistic artefacts of historical significance originating from Italy and dating from the medieval to the 18th century. The technique extends the depth applicability of Raman spectroscopy and with its inherently high chemical specificity that expands the portfolio of existing non‐destructive analytical tools in Cultural Heritage permitting to avoid cross‐sectional analysis often necessitated with this type of samples with conventional Raman microscopy. Currently, the method is non‐invasive only for artworks that can be placed under Raman microscope although there is a prospect for its use in a mobile system with largely removed restrictions on sample dimensions. © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.  相似文献   

16.
A new, well‐designed type of micron‐sized hollow copper spheres was synthesized in this article. The process was performed using ZSM‐5 molecular sieve as a template. It has the prominent advantage in that the various stages of pretreatment for the core material can be omitted because of the inherent nature of the ZSM‐5 molecular sieve. The surface of the sieve consists entirely of negatively charged oxygen sites such that free Cu2+ ions can easily be adsorbed and reduced there, acting thereafter as a seed and self‐catalyst for electroless plating of copper so as to lead to the formation of interconnected Cu particles around the external surface of the ZSM‐5 molecular sieve. Moreover, there are many holes with a size of more than 5 × 5 Å2 on the surface of the ZSM‐5 molecular sieve, which can act as concavities that the reduced Cu can ‘rivet’ into, resulting in the link between the molecular sieve and the reduced Cu being stronger. In addition, the ZSM‐5 molecular sieve has the merits of ease of removal, low cost, and less aggregation owing to its micrometer size, and it avoids the use of nonvolatile surfactants, which may be adsorbed onto the reduced Cu and then interfere with the possible application of the hollow copper spheres in catalysis and in analytical devices based on surface‐enhanced Raman scattering (SERS) spectroscopy. The copper spheres obtained show enhanced Raman scattering in the presence of adsorbed 4‐mercaptobenzoic acid (4‐MBA) with excitation at 632.8 nm, and the enhancement factor reaches ∼7 × 103. The new micron‐sized hollow copper spheres are produced in a simple and cost‐effective method; so they are expected to play an important role in the fields of catalysts, fillers, and engineering, and in the development of SERS‐based analytical devices. The synthetic method may represent a novel route to prepare hollow metal spheres, which is a subject of intense interest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《Composite Interfaces》2013,20(2-3):191-200
Biocompatibility in research and development of advanced prosthetics is a current problem faced by medical researchers. A major challenge in tissue engineering is to find materials and processing techniques that allow them to produce extracellular matrices (ECM) mimicking scaffolds that promote cell growth and organization into a specific architecture, inducing cell differentiation and subsequent cell function. The ideal tissue repair material thus should consist of synthetic biomaterials, such as natural polymers mimicking the mechanical and biological functionality of the ECM. Cellulose acetate membranes were used as scaffolds for microvascular cell growth. Hydroxyapatite (HA) is a natural ceramic (responsible for strength and stability in the human skeletal system) operable as a biocomposite coating to improve the biocompatibility of implant substrates. In this work, HA was prepared from low cost natural calcium source — eggshells. Its structural properties were investigated by scanning (SEM), transmission (TEM) electron microscopies and Fourier Transformed Infrared spectroscopy (FT-IR). The composition analyses of HA were measured by the total reflection X-ray fluorescence spectrometer (TXRF) and by prompt gamma activation analysis (PGAA). Hydroxyapatite added biodegradable scaffolds have been prepared by electrospinning method to enhance biological functionality.  相似文献   

18.
Development of advanced theranostics for personalized medicine is of great interest. Herein, a multifunctional mesoporous silica‐based drug delivery carrier has been developed for efficient chemo/photothermal therapy. The unique Au nanoframes@mSiO2 spheres are elaborately prepared by utilizing Ag@mSiO2 yolk–shell spheres as the template through spatially confined galvanic replacement method. Compared with the Ag@mSiO2 yolk–shell spheres, the resultant Au nanoframes@mSiO2 spheres show a strong and broad near‐infrared (NIR) absorbance in the 550–1100 nm region, high surface areas, and good biocompatibility. When irradiated with a NIR laser with a power intensity of 1 W cm?2 at 808 nm, they can become highly localized heat sources through the photothermal effect. Moreover, the photothermal effect of the Au nanoframes can significantly promote the fast release of doxorubicin. The in vitro studies show obvious synergistic effects combining photothermal therapy and chemotherapy in the Au nanoframes@mSiO2 spheres against Hela cells. It is believed that the as‐obtained multifunctional vehicles provide a promising platform for the combination of hyperthermia and chemotherapy for cancer treatment application.  相似文献   

19.
Synchrotron radiation diffraction data were collected from hydroxyapatite–carbon nanotube bioceramic composites to determine the crystallite size and to measure changes in non‐uniform strain. Estimates of crystallite size and strain were determined by line‐profile fitting of discrete peaks and these were compared with a Rietveld whole‐pattern analysis. Overall the two analysis methods produced very similar numbers. In the commercial hydroxyapatite material, one reflection in particular, (0 2 3), has higher crystallite size and lower strain values in comparison with laboratory‐synthesized material. This could indicate preferential crystal growth in the [0 2 3] direction in the commercial material. From the measured strains in the pure material and the composite, there was a degree of bonding between the matrix and strengthening fibres. However, increasing the amount of carbon nanotubes in the composite has increased the strain in the material, which is undesirable for biomedical implant applications.  相似文献   

20.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号