首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focusing planar refractive mosaic lenses based on triangular prism microstructures have been used as an alternative approach for wide‐bandpass monochromatization of high‐energy X‐rays. The strong energy dependence of the refractive index of the lens material leads to an analogous energy dependence of the focal length of the lens. The refractive mosaic lens, in comparison with the refractive lens of continuous parabolic profile, is characterized by a higher aperture because of reduced passive material. In combination with a well defined pinhole aperture in the focal plane, the transmittance of photons of an appropriate energy can be relatively high and photons of deviating energy can be efficiently suppressed. The photon energy can be tuned by translating the pinhole along the optical axis, and the bandwidth changed by selecting appropriate pinhole aperture and beam stop. This method of monochromatization was realised at the ANKA FLUO beamline using a mosaic lens together with a 20 µm pinhole and beam stop. An energy resolution of 2.0% at 16 keV has been achieved.  相似文献   

2.
The possibility of splitting a thin (e.g. undulator) X‐ray beam based on diffraction–refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left‐hand part of the roof and the other half impinges on the right‐hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel‐cut crystals with roof‐like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.  相似文献   

3.
Clessidra (hour‐glass) X‐ray lenses have an overall shape of an old hour glass, in which two opposing larger triangular prisms are formed of smaller identical prisms or prism‐like objects. In these lenses, absorbing and otherwise optically inactive material was removed with a material‐removal strategy similar to that used by Fresnel in the lighthouse lens construction. It is verified that when the single prism rows are incoherently illuminated they can be operated as independent micro‐lenses with coinciding image positions for efficient X‐ray beam concentration. Experimental data for the line width and the refraction efficiency in one‐dimensional focusing are consistent with the expectations. Imperfections in the structures produced by state‐of‐the‐art deep X‐ray lithography directed only 35% of the incident intensity away from the image and widened it by just 10% to 125 µm. An array of micro‐lenses with easily feasible prism sizes is proposed as an efficient retrofit for the refocusing optics in an existing beamline, where it would provide seven‐fold flux enhancement.  相似文献   

4.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

5.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

6.
7.
The development of medium‐energy inelastic X‐ray scattering optics with meV and sub‐meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back‐reflection angular‐dispersion monochromator or analyzer, is analyzed. The results show that the multiple‐beam diffraction effect together with transmission‐induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four‐bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV‐ to sub‐meV‐resolution inelastic X‐ray scattering spectroscopy.  相似文献   

8.
A novel hybrid X‐ray focusing scheme was developed for operation of the X‐ray streak camera at the Advanced Photon Source: an X‐ray lens focuses vertically from a long distance of 16 m and produces an extended focus that has a small footprint on an inexpensive sagittal mirror. A patented method is used to continuously adjust the focal length of the lens and compensate for chromatic dispersion in energy scans.  相似文献   

9.
The morphological change of silver nano‐particles (AgNPs) exposed to an intense synchrotron X‐ray beam was investigated for the purpose of direct nano‐scale patterning of metal thin films. AgNPs irradiated by hard X‐rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X‐ray induced oxidation was utilized to fabricate nano‐scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano‐lines were also fabricated using the proposed method.  相似文献   

10.
It is shown theoretically that the asymmetric or inclined double‐crystal X‐ray monochromator may be used for X‐ray pulse compression if the pulse is properly chirped. By adjusting the mutual distance of the two asymmetric or inclined crystals it should be possible to achieve even a sub‐femtosecond compression of a chirped free‐electron laser pulse. The small d‐spacing of the crystal enables a more compact scheme compared with the currently used grating compression scheme. The asymmetric cut of the crystal enables the acceptance of a larger bandwidth. The inclined cut has larger tunability.  相似文献   

11.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

12.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

13.
A new definition of the effective aperture of the X‐ray compound refractive lens (CRL) is proposed. Both linear (one‐dimensional) and circular (two‐dimensional) CRLs are considered. It is shown that for a strongly absorbing CRL the real aperture does not influence the focusing properties and the effective aperture is determined by absorption. However, there are three ways to determine the effective aperture in terms of transparent CRLs. In the papers by Kohn [(2002). JETP Lett. 76 , 600–603; (2003). J. Exp. Theor. Phys. 97 , 204–215; (2009). J. Surface Investig. 3 , 358–364; (2012). J. Synchrotron Rad. 19 , 84–92; Kohn et al. (2003). Opt. Commun. 216 , 247–260; (2003). J. Phys. IV Fr, 104 , 217–220], the FWHM of the X‐ray beam intensity just behind the CRL was used. In the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6 , 1153–1167; (1998). J. Appl. Phys. 84 , 5855–5861], the maximum intensity value at the focus was used. Numerically, these two definitions differ by 50%. The new definition is based on the integral intensity of the beam behind the CRL over the real aperture. The integral intensity is the most physical value and is independent of distance. The new definition gives a value that is greater than that of the Kohn definition by 6% and less than that of the Lengeler definition by 41%. A new approximation for the aperture function of a two‐dimensional CRL is proposed which allows one to calculate the two‐dimensional CRL through the one‐dimensional CRL and to obtain an analytical solution for a complex system of many CRLs.  相似文献   

14.
The MISTRAL beamline is one of the seven phase‐I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi‐keV spectral regions for biological applications. The optics design consists of a plane‐grating monochromator that has been implemented using variable‐line‐spacing gratings to fulfil the requirements of X‐ray microscopy using a reflective condenser. For instance, a fixed‐focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.  相似文献   

15.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

16.
On the basis of the eikonal approximation, X‐ray Bragg‐case focusing by a perfect crystal with parabolic‐shaped entrance surface is considered theoretically. Expressions for focal distances, intensity gain and distribution around the focus spot as well as for the focus spot sizes are obtained. The condition of point focusing is presented. The experiment can be performed using X‐ray synchrotron radiation sources (particularly free‐electron lasers).  相似文献   

17.
The effect of angular vibrations of the crystals in cryogenically cooled monochromators on the beam performance has been studied theoretically and experimentally. A simple relation between amplitude of the vibrations and size of the focused beam is developed. It is shown that the double‐crystal monochromator vibrations affect not only the image size but also the image position along the optical axis. Several methods to measure vibrations with the X‐ray beam are explained and analyzed. The methods have been applied to systematically study angular crystal vibrations at monochromators installed at the PETRA III light source. Characteristic values of the amplitudes of angular vibrations for different monochromators are presented.  相似文献   

18.
The coupling and propagation of electromagnetic waves through planar X‐ray waveguides (WG) with vacuum gap and Si claddings are analyzed in detail, starting from the source and ending at the detector. The general case of linearly tapered WGs (i.e. with the entrance aperture different from the exit one) is considered. Different kinds of sources, i.e. synchrotron radiation and laboratory desk‐top sources, have been considered, with the former providing a fully coherent incoming beam and the latter partially coherent beams. It is demonstrated that useful information about the parameters of the WG can be derived, comparing experimental results with computer simulation based on analytical solutions of the Helmholtz equation which take into account the amplitude and phase matching between the standing waves created in front of the WG, and the resonance modes propagating into the WG.  相似文献   

19.
An X‐ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X‐ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.  相似文献   

20.
Transmission X‐ray mirrors have been fabricated from 300–400 nm‐thick low‐stress silicon nitride windows of size 0.6 mm × 85 mm. The windows act as a high‐pass energy filter at grazing incidence in an X‐ray beam for the beam transmitted through the window. The energy cut‐off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut‐off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22°, a 0.3 mm × 0.3 mm X‐ray beam was allowed to pass through the mirror with a cut‐off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut‐off can be adjusted from 8 to 12 keV at an angle of 0.26° to 0.18°, respectively. The observed mirror transmittance was above 80% for a 300 nm‐thick film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号