首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pr-doped Li4Ti5O12 in the form of Li4?x/3Ti5?2x/3PrxO12 (x = 0, 0.01, 0.03, 0.05, and 0.07) was synthesized successfully by an electrospinning technique. ICP shows that the doped samples are closed to the targeted samples. XRD analysis demonstrates that traces of Pr3+ can enlarge the lattice parameter of Li4Ti5O12 from 8.3403 to 8.3765 Å without changing the spinel structure. The increase of lattice parameter is beneficial to the intercalation and de-intercalation of lithium-ion. XPS results identify the existence form of Ti is mainly Ti4+ and Ti3+ in minor quantity in Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples due to the small amount of Pr3+. The transition from Ti4+ to Ti3+ is conducive to the electronic conductivity of Li4Ti5O12. FESEM images show that all the nanofibers are well crystallized with a diameter of about 200 nm and distributed uniformly. The results of electrochemical measurement reveal that the 1D Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) nanofibers display enhanced high-rate capability and cycling stability compared with that of undoped nanofibers. The high-rate discharge capacity of the Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples is excellent (101.6 mAh g?1 at 50 °C), which is about 58.48 % of the discharge capacity at 0.2 °C and 4.3 times than that of the bare Li4Ti5O12 (23.5 mA g?1). Even at 10 °C (1750 mA g?1), the specific discharge capacity is still 112.8 mAh g?1 after 1000 cycles (87.9 % of the initial discharge capacity). The results of cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) illustrate that the Pr-doped Li4Ti5O12 electrodes possess better dynamic performance than the pure Li4Ti5O12, further confirming the excellent electrochemical properties above.  相似文献   

2.
Li4Ti5O12 (LTO) was synthesized with two different cooling methods by solid-state method, namely fast cooling and air cooling. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), galvanostatic charge–discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), respectively. XRD revealed that the basic LTO structure was not changed. FESEM images showed that fast cooling effectively reduced the particle sizes and the agglomeration of particles. Galvanostatic charge–discharge test showed that the air cooling sample exhibited a mediocre performance, having an initial discharge capacity of 136.3mAh?·?g?1 at 0.5 C; however, the fast cooling sample demonstrated noticeable improvement in both of its discharge capacity and rate capability, with a high initial capacity value of 142.7 mAh?·?g?1 at 0.5 C. CV measurements also revealed that fast cooling enhanced the reversibility of the LTO. EIS confirmed that fast cooling resulted in lower electrochemical polarization and a higher lithium-ion diffusion coefficient. Therefore, fast cooling have a great impact on discharge capacity, rate capability, and cycling performance of LTO anode materials for lithium-ion batteries.  相似文献   

3.
Qian Huang  Zhen Yang  Jian Mao 《Ionics》2017,23(4):803-811
Li4Ti5O12 is regarded as the ideal anode material for its stable structure, high charge/discharge platform, and safety performance. But low ionic and electronic conductivity of the Li4Ti5O12 anode material under the condition of low temperature greatly limit its application in practical production. In this paper, some modified methods for improving the low-temperature electrochemical performance of Li4Ti5O12 anode material were summarized. Meanwhile, we explored its influence mechanisms at low temperature, one is, with the subtle changes of lattice parameters and oxygen atom fraction coordinates of Li4Ti5O12 at low temperature, the changes of the bond length influence the structural stability of Li4Ti5O12 and the diffusion path of lithium ions; the other reason is that the charge transfer resistance increases obviously and the lithium ion diffusion coefficient reduces under low temperature. Finally, the research directions for improving the low-temperature electrochemical performance were proposed.  相似文献   

4.
In order to improve the rate capability of Li4Ti5O12, Ti4O7 powder was successfully fabricated by improved hydrogen reduction method, then a dual-phase composite Li4Ti5O12/Ti4O7 has been synthesized as anode material for lithium-ion batteries. It is found that the Li4Ti5O12/Ti4O7 composite shows higher reversible capacity and better rate capability compared to Li4Ti5O12. According to the charge-discharge tests, the Li4Ti5O12/Ti4O7 composite exhibits excellent rate capability of 172.3 mAh g?1 at 0.2 C, which is close to the theoretical value of the spinel Li4Ti5O12. More impressively, the reversible capacity of Li4Ti5O12/Ti4O7 composite is 103.1 mAh g?1 at the current density of 20 C after 100th cycles, and it maintains 84.8% of the initial discharge capacity, whereas that of the bare spinel Li4Ti5O12 is only 22.3 mAh g?1 with a capacity retention of 31.1%. The results indicate that Li4Ti5O12/Ti4O7 composite could be a promising anode material with relative high capacity and good rate capability for lithium-ion batteries.  相似文献   

5.
The lithium-ion battery is a battery that is being developed to become a repository of energy, particularly for electric vehicles. Lithium titanate (Li4Ti5O12) anodes are quite promising for this application because of its zero-strain properties so it can withstand the high rate. However, the capacity of LTO (Li4Ti5O12) is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200 mAh/g, but it has a high volume of the expansion. Nano-size can also help increase the capacity. Therefore composite of LTO/nano Si is made to create an anode with a high capacity and also stability. Nano Si is added with a variation of 1, 5, and 10%. LTO/nano Si composite is characterized using XRD, SEM-EDX, and TEM-EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh/g in the LTO-10% Si. Stability of composite LTO/nano Si is good, evidenced by the coulomb efficiency at the high rate of close to 100%.  相似文献   

6.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

7.
A facile sol-gel approach for the synthesis of lithium titanate composite decorated with N-doped carbon material (LTO/NC) is proposed. Urea is used as a nitrogen source in the proposed approach. The LTO/NC exhibits superior electrochemical performances as an electrode material for lithium-ion batteries, delivering a discharge capacity of as high as 103 mAh g?1 at a high rate of 20 C and retaining a stable reversible capacity of 90 mAh g?1 after 1000 cycles, corresponding to 100% capacity retention. These excellent electrochemical performances are proved by the nanoscale structure and N-doped carbon coating. NC layers were uniformly dispersed on the surface of LTO, thus preventing agglomeration, favoring the rapid migration of the inserted Li ion, and increasing the Li+ diffusion coefficient and electronic conductivity. LTO with the appropriate amount of NC coating is a promising anode material with applications in the development of high-powered and durable lithium-ion batteries.  相似文献   

8.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

9.
One-dimensional Ce3+-doped Li4Ti5O12 (Li4Ti5?x Ce x O12, x?=?0, 0.01, 0.02, and 0.05) sub-microbelts with the width of approximately 500 nm and thickness of about 200 nm have been synthesized via the facile electrospinning method. The structure and morphology of the as-prepared samples are characterized by XRD, TEM, SEM, BET, HRTEM, XPS, and AFM. Importantly, one-dimensional Li4Ti5O12 sub-microbelts can be well preserved with the introduction of Ce3+ ions, while CeO2 impurity is obtained when x is greater than or equal to 0.02. The comparative experiments prove that Ce3+-doped Li4Ti5O12 electrodes exhibit the brilliant electrochemical performance than undoped counterpart. Particularly, the reversible capacity of Li4Ti4.98Ce0.02O12 electrode reaches up to 139.9 mAh g?1 and still maintains at 132.6 mAh g?1 even after 100 cycles under the current rate of 4 C. The superior lithium storage properties of Li4Ti4.98Ce0.02O12 electrode could be attributed to their intrinsic structure advantage as well as enhanced overall conductivity.
Graphical abstract ?
  相似文献   

10.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

11.
The processes of lithium redistribution in the structure of cubic Li4Ti5O12 spinel, caused by both chromium doping and thermal activation, have been investigated by nuclear magnetic resonance. It is shown that Li ions migrate from tetra- to octahedral crystallographic positions with an increase in temperature. This process becomes more pronounced at temperatures above 400 K. In contrast, the fraction of tetrahedrally coordinated Li increases as a result of doping with chromium.  相似文献   

12.
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g?1 at a lower current density of 0.1 or 0.2 A g?1 and remain 600 mAh g?1 at the high current density of 5 A g?1. After 300 cycles at 0.5 A g?1, a high charge capacity of 850 mAh g?1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.  相似文献   

13.
In this paper, Li2Fe1?yMgySiO4/C (y?=?0, 0.01, 0.02, 0.03, 0.05), a cathode material for lithium-ion battery was synthesized by solid-state method and modified by doping Mg2+ on the iron site. The effects of Mg2+ doping on the crystal structure and electrochemical performance Li2FeSiO4 was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical tests. Electrochemical methods of measurement were applied including constant current charge–discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), to determine the electrochemical performance of the material and the optimal doping ion and ratio. The results showed that Li2Fe0.98Mg0.02SiO4/C has the higher specific capacity and better cycle stability as well as lower impedance and better reversibility. The enhanced electrochemical performance can be attributed to the increased electronic conductivity, the decreased charge transfer impedance, and the improved Li-ion diffusion coefficient. Then, further study on the synthesis conditions was performed to find the optimal combustion temperature and time. According to the study, the material which has the best electrochemical performance, shows initial discharge specific capacity of 142.3 mAh g?1 at 0.1 C (1 C?=?166 mA g?1) and coulomb efficiency of 95.6%, under the condition that the temperature is 700 °C and the calcining time is 10 h.  相似文献   

14.
The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.  相似文献   

15.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

16.
We report the synthesis of Li2CoSiO4 by the sol-gel method and the preparation of a composite electrode by incorporating functionalized multi-walled carbon nanotubes (fn. MWCNTs) as conductive additive. XRD pattern of the composite confirms the structural stability of Li2CoSiO4 even after the addition of fn. MWCNTs. SEM images of the composite reveal the presence of conductive bridges formed by MWCNTs between the submicron-sized particles of Li2CoSiO4. The cyclic voltammograms of the composite cathode show redox peaks with higher current density than pure Li2CoSiO4 and the current density increases with increase in sweep rate. The diffusion coefficient of lithium has been improved by the addition of fn. MWCNTs from 1 × 10?14 to 8 × 10?14 cm2/s as calculated using Randles-Sevcik equation. The charge-discharge cycling performance of both pure Li2CoSiO4 and composite cathode has been discussed.  相似文献   

17.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

18.
We describe in this paper the synthesis and the characterization of Li4Ti5O12-reduced graphene oxide (LTO-RGO) composite and demonstrate their use as hybrid supercapacitor, which is consist of an LTO negative electrode and activate carbon (AC) positive electrode. The LTO-RGO composites were synthesized using a simple, one-step process, in which lithium sources and titanium sources were dissolved in a graphene oxide (GO) suspension and then thermal treated in N2. The lithium-ion battery with LTO-RGO composite anode electrode revealed higher discharge capacity (167 mAh g?1 at 0.2 C) and better capacity retention (67%) than the one with pure LTO. Meanwhile, compared with the AC//LTO supercapacitor, the AC//LTO-RGO hybrid supercapacitor exhibits higher energy density and power density. Results show that the LTO-RGO composite is a very promising anode material for hybrid supercapacitor.  相似文献   

19.
In the present paper, we describe utilization of cathode active material as anode active material, for example, Li2MnSiO4. The lithium manganese silicate has been successfully synthesized by solid-state reaction method. The X-ray diffraction pattern confirms the orthorhombic structure with Pmn2 1 space group. The Li/Li2MnSiO4 cell delivered the initial discharge capacity of 420 mA h g−1, which is 110 mA h g−1 higher than graphitic anodes. The electrochemical reversibility and solid electrolyte interface formation of the Li2MnSiO4 electrode was emphasized by cyclic voltammetry.  相似文献   

20.
In this study, well-crystallized Li4Mn5O12 powder was synthesized by a self-propagating combustion method using citric acid as a reducing agent. Various conditions were studied in order to find the optimal conditions for the synthesis of pure Li4Mn5O12. The precursor obtained was then annealed at different temperatures for 24 h in a furnace. X-ray diffraction results showed that Li4Mn5O12 crystallite is stable at relatively low temperature of 400 °C but decompose to spinel LiMn2O4 and monoclinic Li2MnO3 at temperatures higher than 500 °C. The prepared samples were also characterized by FESEM and charge-discharge tests. The result showed that the specific capacity of 70.7 mAh/g was obtained within potential range of 4.2 to 2.5 V at constant current of 1.0 mA. The electrochemical performances of Li4Mn5O12 material was further discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号