首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work concerns determination of the manganese valence state and speciation by wavelength‐dispersive X‐ray fluorescence analysis. The authors investigated the effect of the manganese valence state and speciation on the intensity of some К‐series lines of the X‐ray emission spectrum for the samples of manganese compounds. The intensities of MnKβ5 line and MnKβ′ satellite are least influenced by speciation, and they may be used for evaluating the manganese valence state for the samples containing low iron. The intensities of MnKβ″ and MnKβx satellites may be employed for assessing the manganese speciation. The results of X‐ray fluorescence determination of the manganese valence state and speciation in the manganese ores of the South Ural deposits agree with the X‐ray diffraction data. The X‐ray fluorescence method is definitely advantageous, because it does not require a complicated process of sample preparation and allows to receive fast information on the manganese valence state and speciation with the purpose to assess the quality of manganese ores. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A new method for the quantification of organic and inorganic phase fractions was developed for fluoropolymer/acrylic‐blend paints – clear and white paint coatings – on aluminum panels by using wavelength dispersive X‐ray fluorescence spectrometry (WDXRF). The method was developed for clear coat samples (only containing fluoropolymer and acrylic phases) as well as white paint samples by also measuring silica and titanium dioxide levels. Both WDXRF and X‐ray photoelectron spectroscopy (XPS), a surface technique, were investigated. For clear coat samples, we found that WDXRF provided far superior quantitative results to XPS, likely related to the extreme surface sensitivity of XPS, in this case a drawback more than a strength. For white paint samples, the X‐ray fluorescence spectrometry method achieved a relative accuracy typically better than 5% for the organic phases and better than 2% for the inorganic phases, for measurements on 8‐mm diameter samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Discovery of new materials drives the deployment of new technologies. Complex technological requirements demand precisely tailored material functionalities, and materials scientists are driven to search for these new materials in compositionally complex and often non‐equilibrium spaces containing three, four or more elements. The phase behavior of these high‐order composition spaces is mostly unknown and unexplored. High‐throughput methods can offer strategies for efficiently searching complex and multi‐dimensional material genomes for these much needed new materials and can also suggest a processing pathway for synthesizing them. However, high‐throughput structural characterization is still relatively under‐developed for rapid material discovery. Here, a synchrotron X‐ray diffraction and fluorescence experiment for rapid measurement of both X‐ray powder patterns and compositions for an array of samples in a material library is presented. The experiment is capable of measuring more than 5000 samples per day, as demonstrated by the acquisition of high‐quality powder patterns in a bismuth–vanadium–iron oxide composition library. A detailed discussion of the scattering geometry and its ability to be tailored for different material systems is provided, with specific attention given to the characterization of fiber textured thin films. The described prototype facility is capable of meeting the structural characterization needs for the first generation of high‐throughput material genomic searches.  相似文献   

4.
Partial least squares, principal component regression and support vector machine multivariate methods were used for overlap correction of sodium–zinc (Na(Kα)–Zn(Lα)) spectral lines generated by means of wavelength dispersion X‐ray fluorescence (WDXRF) combined with standard‐less software (IQ+) technique for the analyses of mineral samples. This methodology uses one scan channel using PX1 analyzer crystal, 550‐µm collimator, flow detector (Ar + CH4), and rhodium (Rh) tube for determination of Na and Zn in mineral compositions in minimum time. The calibration matrix was made up of 35 samples containing different amounts of Na2O and ZnO. The considered concentration ranges were 0–5% for both Na2O and ZnO. The values for 2θ angle were recorded between 25° and 29.9° at every 0.1°. Variable tube powers (kV ? mA) were used to investigate the effect of tube power on the analyses of elements. The validation of the multivariate methods was realized by analyzing soil samples. Atomic absorption and flame photometry methods were used as reference methods for analyzing Zn and Na in the soil samples, respectively. The results of using chemometric methods, WDXRF (standard‐less software) and reference method determined partial least squares and support vector machine models obtained more acceptable results for Na2O in presence of ZnO than those of WDXRF (standard‐less software). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes a methodology for the analysis of nitrogen by scanning electron microscope with an energy dispersive X‐ray spectrometer (SEM‐EDS). The methodology was developed to have a rapid and accurate alternative method to the elemental analysis by combustion and thermoconductivity detection that does not imply the decomposition of the sample. Two methods by SEM‐EDS were established: a quantitative method trying to construct a calibration curve with reference materials and another using the standardless method provided with the instrument software, and the results were compared with those obtained by elemental analysis using two instruments that work at different temperature. An important matrix effect was found when trying to construct a calibration curve for SEM‐EDS for any kind of material, being corrected when using the standardless method because this method corrects the matrix effect. The quantification of nitrogen by SEM‐EDS is a good alternative to elemental analysis by combustion and thermoconductivity detection in those cases where the sample has a very high decomposition temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This article describes the details of metal concentrations evaluated using wavelength dispersive X‐ray fluorescence (WD‐XRF) spectrometry. A total of 22 elements, Na, Mg, Al, Si, P, S, K, Ti, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb, Ba, Au, and Sn from 16 Ayurvedic medicines were characterized. The method was validated by analyzing the six certified reference materials of soil standards [NIST SRM‐2710, CRM 027‐050 (US‐EPA certified), PS‐1, TILL‐1 and TILL‐4 (Canadian certified reference material, CCRMP) and JSO‐1 (Japanese certified reference material)]. The elemental concentrations in all the standards are found to be within ± 10% of the reported values. Crystalline phases in the individual drug samples were explained by powder X‐ray diffraction (XRD) technique. Qualitative phase identification was done using the ICDD database. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Thermal treatment of mineral ores such as ilmenite can initiate phase transformations that could affect their activation or deactivation, subsequently influencing their ability to dissolve in a leaching agent. Most laboratory‐based X‐ray diffraction (XRD) studies were carried out ex situ in which realistic diffraction patterns could not be obtained simultaneously with occurring reactions and were time‐consuming. The availability of synchrotron‐radiation‐based XRD not only allows in situ analysis, but significantly shortens the data recording time. The present study details the design of a robust high‐temperature microfurnace which allows thermal processing of mineral ore samples and the simultaneous collection of high‐resolution synchrotron XRD data. In addition, the application of the manufactured microfurnace for in situ study of phase transformations of ilmenite ore under reducing conditions is demonstrated.  相似文献   

8.
Advances in x‐ray fluorescence (XRF) using high‐energy polarized energy‐dispersive (ED)XRF spectrometry (PEDXRF) were applied to the determination of trace As, Hg, and Pb in various color additives subject to batch certification by the U.S. Food and Drug Administration (FDA). The objectives of this study were to simplify sample preparation for quantitative determination of these elements and, if possible, to achieve improved sensitivity and detection limits compared to techniques currently used for certification. PEDXRF was compared with wavelength‐dispersive x‐ray fluorescence spectrometry (WDXRF) and inductively coupled plasma – mass spectrometry (ICP‐MS) for the analysis of trace levels of As, Hg, and Pb in certifiable color additives. For these light matrices, PEDXRF provided better signal‐to‐noise and allowed quantitation in smaller amounts of color additive relative to WDXRF and equal or better precision to ICP‐MS. Determination of these trace elements in a variety of color additives was possible relative to calibrations generated from one color additive using specimens prepared simply by pouring the color additive powder into an XRF sample cup. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

9.
FT Raman spectroscopy and micro‐Raman spectroscopy with lasers of three different wavelengths (1064 nm, 785 nm and 532 nm) were used for analysis of reference samples of natural clay pigments including white clay minerals (kaolinite, illite, montmorillonite), green earths (glauconite and celadonite) and red earths (natural mixtures of white clay minerals with hematite). In addition, eight micro‐samples obtained from historical paintings containing clay pigments in ground and colour layers have been examined. Powder X‐ray diffraction and micro‐diffraction were used as supplementary methods. It was found that laser operating at 1064 nm provided the best quality Raman spectra for distinguishing different white clay minerals, but the spectra of green and red earths were affected by strong fluorescence caused by the presence of iron. Green earth minerals could be easily distinguished by 532 or 785 nm excitation lasers, even in small concentrations in the paint layers. On the other hand, when anatase (TiO2) or iron oxides (such as hematite) were present as admixtures (both are quite common, particularly in red earths), the collection of characteristic spectra of clay minerals which form the main component of the layer was hindered or even prevented. Another complicating factor was the fluorescence produced by organic binders when analysing the micro‐samples of artworks. In those cases, it is always necessary to use powder X‐ray micro‐diffraction to avoid misleading interpretations of the pigment's composition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
铁矿资源是我国国民经济基础产业中的重要组成要素,在我国经济发展中有举足轻重的地位。铁矿品位的检定效率对铁矿石开采效率有重大影响。目前,铁矿石品位的化学分析检定法,不仅存在成本较高,化验周期长的问题,更主要的是其无法实现铁矿品位原位测定,相对配矿流程存在滞后效应,无法有效降低矿石开采的损失贫化率;基于可见光-近红外光谱分析的铁矿品位原位测定技术是解决这一问题的有效途径。以225个红岭矽卡岩型铁矿测试样本的可见光-近红外光谱数据及化学分析数据为数据源,首先对原始数据进行了平滑处理,并分析了矽卡岩型铁矿可见光-近红外光谱特征,然后利用倒数对数、多元散射校正(MSC)两种预处理方法对平滑后的光谱数据进行处理,再分别以主成分分析法(PCA)、遗传算法(GA)两种降维算法对预处理前后的光谱数据进行了处理,获取了六种不同预处理组合算法处理后的数据源。其中以PCA降维算法所降维数分别为3维、3维、7维;以GA降维算法所降维数分别为477维、489维、509维。最后基于随机森林(RF)和极限学习机(ELM)建立了矽卡岩型矿石金属铁品位的定量反演模型,以决定系数(R2)、均方根误差(RMSE)和平均相对误差(MRE)三个指标分别对模型的稳定性、精确度、可信度进行评价。结果表明,经MSC处理及PCA降维后的数据基于ELM算法建立的定量反演模型效果最优,其R2可达0.99、RMSE为0.005 7、MRE为2.0%,该方法所建模型对红岭矽卡岩型铁矿品位反演精度有明显的提升。对矽卡岩铁矿品位的实时、快速分析提供了一种有效的方法,对实现矽卡岩型铁矿的高效开采具有重要的现实意义。  相似文献   

11.
X射线粉末衍射的新起点——Rietveld全谱拟合   总被引:14,自引:0,他引:14  
马礼敦 《物理学进展》1996,16(2):251-271
Rietveld全谱拟合法及高分辨X射线粉末衍射实验方法的出现与发展,使X射线粉末衍射进入了一个新阶段,不但提高了分析结果的质量,并且使从头晶体结构测定成为可能。本文扼要介绍了Rietveld全谱拟合法的理论;高分辨高准确的粉末衍射装置,从头晶体结构测定方法及多晶材料结构表征的全谱拟合法(包括作物相定性分析、物相定量分析、晶粒大小及点阵畸变的测定等)  相似文献   

12.
Atomic‐resolution structures from small proteins have recently been determined from high‐quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40 , 133–143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129 , 11865–11871]. While powder diffraction data have been obtained from batch samples of small crystal‐suspensions, which are exposed to X‐rays for long periods of time and undergo significant radiation damage, the proof‐of‐concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow‐focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X‐ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest‐order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free‐electron X‐ray laser schemes, and for serial crystallography using a single‐file beam of aligned hydrated molecules.  相似文献   

13.
The design of experiments was used to study sources of errors in the sample preparation and to choose optimal conditions for X‐ray fluorescence (XRF) analysis of milk products of varying fat content. The measurements were performed using the conventional wavelength‐dispersive XRF (WDXRF) and the total reflection XRF (TXRF) techniques. For WDXRF, the dried milk samples were pelletized, and the mathematical models were constructed, which described the dependence of XRF intensity on the pelletizing pressure, the pellet weight and the milk fat content. The effect of radiation time on the stability of pressed milk powder samples was also estimated. When applying TXRF, the sample preparation involved diluting milk samples with the ultrapure water, adding the internal standard (Ga) and drying of a sample aliquot on a quartz glass sample carrier. The mathematical models were designed, which described the dependence of the sample preparation error on the dilution ratio and sample aliquot pipetted on the carrier. A physical interpretation of the obtained mathematical models was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study is to investigate the information provided by sulfur count rates obtained by X‐ray fluorescence core scanner (XRF‐CS) along sedimentary records. The analysis of two marine sediment cores from the Niger Delta margin shows that XRF‐CS sulfur count rates obtained at the surface of split core sections with XRF‐CS correlate with both direct quantitative pyrite concentrations, as inferred from X‐ray powder diffraction (XRD) and sulfur determination by wavelength dispersive X‐ray fluorescence (WD‐XRF) spectrometry, and total dissolved sulfide (TDS) contents in the sediment pore water. These findings demonstrate the potential of XRF‐CS for providing continuous profiles of pyrite distribution along split sections of sediment cores. The potential of XRF‐CS to detect TDS pore water enrichments in marine sediment records, even a long time after sediment recovery, will be further discussed. Copyright © 2016 The Authors. X‐Ray Spectrometry Published by John Wiley & Sons Ltd.  相似文献   

15.
In this work, we aim at achieving the most accurate quantitative determination of the composition of exoskeletons of bivalves from Tagus estuary with Energy Dispersive X‐ray Fluorescence. Samples from the shells of clams ranging from the Bronze Ages to the 16th century A.D . belonging to the Museu Arqueológico de Almada, and also from the shells of clams collected recently in the same region, were analyzed for comparison of the trace element composition and detection of heavy metals. The analysis was performed with 2 Energy Dispersive X‐ray Fluorescence setups, one with triaxial geometry and another with a conventional geometry and vacuum capabilities. Samples were pressed as pellets, and the spectra collected with both setups were evaluated using standardless fundamental parameter based software's implemented in each setup, and by comparing with standard reference materials of similar matrix. The comparison of the results obtained with different methods lead to the conclusion that the most realistic results were obtained with calibration curves obtained with external standards and correction the fluorescent intensities with the Compton scattering peak. When comparing the obtained concentrations for all the analyzed periods, results showed a decrease of Fe in the 12th Century. Regarding the environmental current state of the Tagus estuary, there were no heavy metals detected above the safety regulations.  相似文献   

16.
《X射线光谱测定》2006,35(4):243-248
A method for the quantitative analysis of chromite ores by x‐ray fluorescence spectrometry using beads is proposed. The work concerned the serious problems caused by the refractory nature of these materials which prevents the use of glass discs in x‐ray fluorescence. An in‐depth study was done to optimise the variables which influence the glass disc formation process. Sufficiently homogeneous glass discs were obtained under the following experimental conditions: lithium tetraborate as flux with moderate sample dilution (1:40), with the addition of one or two drops of LiBr solution(250 g l?1), at a temperature of 1200 °C for 30 min. The qualitative and semiquantitative results for the chromite ores provided synthetic standards based on combinations of similar reference materials and different pure ignited oxides. These standards were used to obtain the calibration curves for Cr, Si, Al, Fe, Ti, Ca, Mn, Mg, Na and K oxides, with root mean square error always below 0.357. The calibration curves were used in the quantitative analysis of chromite ores with satisfactory accuracy, justifying compensation of the interelemental effects. The suggested method is an efficient solution to the problems with the quantitative analysis of this type of material by XRF. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The technique has been developed for the quantification of small tantalum, cesium, barium, lanthanum, cerium, and neodymium concentration in rocks with X‐ray wavelength dispersive spectrometer S8 TIGER (Bruker AXS, Germany). The optimum conditions have been chosen for registration of the analyzed elements characteristic radiation and background positions. To determine the concentrations of analyzed elements accurately, the contribution of overlapping lines to the experimental intensities of the analytical lines has been taken into account. The sample of mass about 1.2 g has been pressed into pellet by the hydraulic press. Metrological studies showed that the accuracy in the determination of the concentration of analyzed elements for the developed technique meets the requirements for methods of III accuracy class. The Ta detection limits calculated for TaLβ1‐analytical and CsLα1‐analytical lines were 2.6 and 3.4 ppm, respectively. The detection limit of Ba, La, Ce, and Nd was (in ppm), respectively, 4.3, 2.7, 5.8, and 4.7. The metrological characteristics of the previously developed and adapted techniques were compared. Ta concentration in granite pegmatite samples has been quantified. The samples of the highest tantalum content have been investigated additionally by powder diffraction and X‐ray microprobe analysis. The X‐ray diffraction method turned out to be insensitive to the detection of mineral phase of tantalum niobates, while micro‐XRF allowed detecting its presence in tourmaline grains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and cheap method is described for simultaneous determination of V, Cr, Mn, Fe, Co, Ni, Cu and Zn contents in water by means of wavelength‐dispersive X‐ray fluorescence (WDXRF) spectrometry after preconcentration. The method of preconcentration is based on sorbing analytes onto silica gel powder. 1‐(2‐pyridylazo)‐2‐naphthol (PAN) is used as a chelating agent. The effect of some parameters such as pH, temperature, stirring time, amount of ligand, breakthrough volume and the limit of detection has been studied. The detection limits 0.120, 9.75 × 10?4, 0.075, 0.070, 0.061, 0.089, 0.029 and 0.044 mg l?1 were achieved for V, Cr, Mn, Fe, Co, Ni, Cu and Zn, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Variations in the chemical composition of 63 different human and 6 different synthetic hair samples were investigated using wavelength dispersive X‐ray fluorescence (WDXRF) spectra profiles. To evaluate the effect of cosmetic treatment on the strands, the human hair samples were bleached, but the synthetic ones were not. To better investigate the data, exploratory analyses were calculated using principal component analysis for the WDXRF spectra. Eight normalizations/standardizations were applied in the WDXRF to verify the clustering tendency. Bleaching was tested, because it is one way in which people mask their real hair color. After the data were standardized, an enhancement of the data discrimination was verified. Furthermore, the explained variance was higher in the first principal components. The WDXRF spectra were able to distinguish samples with distinct features, including synthetic, dyed, and straightened hair. The findings of this study hold promise for forensics due to desirable aspects such as nondestructivity and the possibility of a large hair sample database.  相似文献   

20.
Spectral line overlap is a serious problem in quantitative X‐ray fluorescence analysis. In this study multivariate curve resolution alternating least squares (MCR‐ALS) approach was used to resolve the effect of overlapping S(Kα)–Mo(Lα) emission lines generated by standard‐less software of a wavelength dispersive X‐ray fluorescence spectrometer (WDXRF) for the quantitative monitoring of sulfur in mineral samples. Scan channel set contained Ge crystal, 550‐µm collimator, flow detector (Ar + CH3) and rhodium (Rh) tube. The 18 calibration and 10 validation samples contain 0.00%–10.98% sulfate (SO3) and 0.00%–92.40% MoO3. The digitized spectral data were extracted in the range between 109° and 113.9° (2θ) at every 0.1 degree. Lack of fit percentage (LOF%) for experimental data and the variance explained at the optimum condition () were 2.32 and 99.94, respectively. The values of the root mean square error of prediction (RMSEP) for analyzing of sulfur were 0.23. MCR‐ALS was also compared with partial least squares (PLS) method for determination of sulfur in the presence of molybdenum. To evaluate the resolution and quantification performance of MCR‐ALS procedure, the method was used to determine sulfur in presence of molybdenum in two synthetic soil samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号