首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Hamiltonian formalism for asymptotically flat spaces in general relativity which is manifestly covariant under Poincaré transformations at infinity is proposed and some of its implications are briefly discussed.  相似文献   

2.
The massless relativistic free string is studied in the gauge x0 = τ. It is found that the classical solutions include transverse and longitudinal vibrations. The problem is treated both in the Lagrangian and Hamiltonian formalism. Different ways of quantizing the system are investigated. The path integral quantization leads to a Poincaré invariant quantum theory in any number of dimensions.  相似文献   

3.
The calculation of conserved charges of black holes is a rich problem, for which many methods are known. Until recently, there was some controversy on the proper definition of conserved charges in asymptotically anti-de Sitter (AdS) spaces in arbitrary dimensions. This paper provides a systematic and explicit Hamiltonian derivation of the energy and the angular momenta of both asymptotically flat and asymptotically AdS spacetimes in any dimension D  ≥  4. This requires as a first step a precise determination of the asymptotic conditions of the metric and of its conjugate momentum. These conditions happen to be achieved in ellipsoidal coordinates adapted to the rotating solutions. The asymptotic symmetry algebra is found to be isomorphic either to the Poincaré algebra or to the so(D − 1,2) algebra, as expected. In the asymptotically flat case, the boundary conditions involve a generalization of the parity conditions, introduced by Regge and Teitelboim, which are necessary to make the angular momenta finite. The charges are explicitly computed for Kerr and Kerr–AdS black holes for arbitrary D and they are shown to be in agreement with thermodynamical arguments. The author is a FRIA-FNRS bursar (National Fund for Scientific Research, Belgium).  相似文献   

4.
H Sazdjian 《Annals of Physics》1981,136(1):136-189
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincaré invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincaré invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light.  相似文献   

5.
《Annals of Physics》1986,166(1):234-249
We continue the previous discussion (A. D'Adda, J. E. Nelson, and T. Regge, Ann. Phys. (N.Y.)165) of the covariant canonical formalism for the group manifold and relate it to the standard canonical vierbein formalism as pioneered by Dirac. The form bracket is related to the Poisson bracket of classical mechanics. We utilise systematically the calculus of differential forms and a compound notation which labels Poincaré multiplets. In this way we obtain a particularly clear and compact expression for the Hamiltonian and the constraints algebra of the vierbein formalism.  相似文献   

6.
7.
For a two-surface B tending to an infinite-radius round sphere at spatial infinity, we consider the Brown-York boundary integral HB belonging to the energy sector of the gravitational Hamiltonian. Assuming that the lapse function behaves as N∼1 in the limit, we find agreement between HB and the total Arnowitt-Deser-Misner energy, an agreement first noted by Braden, Brown, Whiting, and York. However, we argue that the Arnowitt-Deser-Misner mass-aspect differs from a gauge invariant mass-aspect by a pure divergence on the unit sphere. We also examine the boundary integral HB corresponding to the Hamiltonian generator of an asymptotic boost, in which case the lapse Nxk grows like one of the asymptotically Cartesian coordinate functions. Such a two-surface integral defines the kth component of the center of mass for (the initial data belonging to) a Cauchy surface Σ bounded by B. In the large-radius limit, we find agreement between HB and an integral introduced by Beig and Murchadha as an improvement upon the center-of-mass integral first written down by Regge and Teitelboim. Although both HB and the Beig- Murchadha integral are naively divergent, they are in fact finite modulo the Hamiltonian constraint. Furthermore, we examine the relationship between HB and a certain two-surface integral which is linear in the spacetime Riemann curvature tensor. Similar integrals featuring the curvature appear in works by Ashtekar and Hansen, Penrose, Goldberg, and Hayward. Within the canonical 3+1 formalism, we define gravitational energy and center of mass as certain moments of Riemann curvature.  相似文献   

8.
The relationship between the canonical operator and the path integral formulation of quantum electrodynamics is analyzed with a particular focus on the implementation of gauge constraints in the two approaches. The removal of gauge volumes in the path integral is shown to match with the presence of zero-norm ghost states associated with gauge transformations in the canonical operator approach. The path integrals for QED in both the Feynman and the temporal gauges are examined and several ways of implementing the gauge constraint integrations are demonstrated. The upshot is to show that both the Feynman and the temporal gauge path integrals are equivalent to the Coulomb gauge path integral, matching the results developed by Kurt Haller using the canonical formalism. In addition, the Faddeev–Popov form for the Feynman gauge and temporal gauge Lagrangian path integrals are derived from the Hamiltonian form of the path integral.  相似文献   

9.
In the framework of the nonlinear mechanics, we study the dynamics of a neutral atom confined in a magnetic quadrupolar trap. Owing to the axial symmetry of the system, the z-component of the angular momentum p φ is an integral of motion and, in cylindrical coordinates, the dynamics of the atom is modeled by a two-degree of freedom Hamiltonian. The structure and evolution of the phase space as a function of the energy is explored extensively by means of numerical techniques of continuation of families of periodic orbits and Poincaré surfaces of section.  相似文献   

10.
11.
Here we present vectorial general integral inequalities involving products of multivariate convex and increasing functions applied to vectors of functions. As specific applications we derive a wide range of vectorial fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type vectorial fractional inequalities involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of L p type, p ≥ 1, and exponential type.  相似文献   

12.
We analyze the kinematic constraints for N = 2 Poincaré supergravity within the context of “superconformal symmetry breakdown”. We find that N = 2 supergravity is described in terms of two independent supertensors: Wαβij and Tαi. We also discuss general properties of superspace covariant derivatives to derive the relation of superspace to component approaches.  相似文献   

13.
The dynamics of the spherically symmetric system of gravitation interacting with scalar and Yang-Mills fields is presented in the context of the canonical formalism. The gauge group considered is a general (compact and semisimple) N parameter group. The scalar (Higgs) field transforms according to an unspecified M-dimensional orthogonal representation of the gauge group. The canonical formalism is based on Dirac's techniques for dealing with constrained hamiltonian systems. First the condition that the scalar and Yang-Mills fields and their conjugate momenta be spherically symmetric up to a gauge is formulated and solved for global gauge transformations, finding, in a general gauge, the explicit angular dependence of the fields and conjugate momenta. It is shown that if the gauge group does not admit a subgroup (locally) isomorphic to the rotation group, then the dynamical variables can only be manifestly spherically symmetric. If the opposite is the case, then the number of allowed degrees of freedom is connected to the angular momentum content of the adjoint representation of the gauge group. Once the suitable variables with explicit angular dependence have been obtained, a reduced action is derived by integrating away the angular coordinates. The canonical formulation of the problem is now based on dynamical variables depending only on an arbitrary radial coordinate r and an arbitrary time coordinate t. Besides the gravitational variables, the formalism now contains two pairs of N-vector variables (R, πr), (Θ, πΘ), corresponding to the allowed Yang-Mills degrees of freedom and one pair of M-vector variables, (h, πh), associated with the original scalar field. The reduced Hamiltonian is invariant under a group of r-dependent gauge transformations such that R plays the role of the gauge field (transforming in the typically inhomogeneous way) and in terms of which the gauge covariant derivatives of Θ and h naturally appear. No derivatives of R appear in the Hamiltonian and the gauge freedom allows us to define a gauge in which R is zero. Also the r and t coordinates are fixed in a way consistent with the equations of motion. Some nontrivial static solutions are found. One of these solutions is given in closed form; it is singular and corresponds to a generalization of the singular solution found in the literature with different degrees of generality and the geometry is described by the Reissner-Nordström metric. The other solution is defined through its asymptotic behavior. It generalizes to curved space the finite energy solution discyssed by Julia and Zee in flat space.  相似文献   

14.
Starting from the instant form of relativistic quantum dynamics for a system of interacting fields, where amongst the ten generators of the Poincaré group only the Hamiltonian and the boost operators carry interactions, we offer an algebraic method to satisfy the Poincaré commutators.We do not need to employ the Lagrangian formalism for local fields with the N?ether representation of the generators. Our approach is based on an opportunity to separate in the primary interaction density a part which is the Lorentz scalar. It makes possible apply the recursive relations obtained in this work to construct the boosts in case of both local field models (for instance with derivative couplings and spins ≥ 1) and their nonlocal extensions. Such models are typical of the meson theory of nuclear forces, where one has to take into account vector meson exchanges and introduce meson-nucleon vertices with cutoffs in momentum space. Considerable attention is paid to finding analytic expressions for the generators in the clothed-particle representation, in which the so-called bad terms are simultaneously removed from the Hamiltonian and the boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the very beginning turn out to be related to certain covariant integrals that are convergent in the field models with appropriate cutoff factors.  相似文献   

15.
Quantum chromodynamics in 1 + 1 space-time is formulated in terms of gauge invariant phase operators; i.e., the Hamiltonian as well as other Poincaré generators are written in a gauge invariant hadronic language without reference to the gluon and quark fields. A systematic method for computing the 1N expansion is given. Both the meson and the baryon sectors are studied in this context. It is shown that no infrared divergences appear at any step of the calculations.  相似文献   

16.
The paper summarizes, generalizes and reveals the physical content of a recently proposed framework that unifies the standard formalisms of special relativity and quantum mechanics. The framework is based on Hilbert spaces H of functions of four space-time variables x,t, furnished with an additional indefinite inner product invariant under Poincaré transformations. The indefinite metric is responsible for breaking the symmetry between space and time variables and for selecting a family of Hilbert subspaces that are preserved under Galileo transformations. Within these subspaces the usual quantum mechanics with Shrödinger evolution and t as the evolution parameter is derived. Simultaneously, the Minkowski space-time is embedded into H as a set of point-localized states, Poincaré transformations obtain unique extensions to H and the embedding commutes with Poincaré transformations. Furthermore, the framework accommodates arbitrary pseudo-Riemannian space-times furnished with the action of the diffeomorphism group.  相似文献   

17.
It is shown that in asymptotically flat space the weakly vanishing Hamiltonian of supergravity theory has to be modified by adding to it certain surface integrals. The numerical value of the surface integrals yields the total energy-momentum, angular momentum and supercharge of the system. The surface integrals have well defined (Dirac) brackets only after the coordinates and supergauge are fixed. In that case they close according to the flat space supersymmetry algebra. If an internal symmetry is included, new surface integrals appear corresponding to the additional gauge charges.  相似文献   

18.
The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of theN-dimensional system with the Hamiltonian which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schrödinger equation are also obtained.  相似文献   

19.
We extend the Poincaré-Cartan integral to constrained systems and we find sufficient conditions for a system whose equations of motion contain arbitrary functions to be Hamiltonian.  相似文献   

20.
The Poincaré invariant system of two point particles with an instantaneous interaction-at-a-distance originally proposed by Fokker is studied in the Hamiltonian formalism. The interaction, which agrees to first order in the coupling constant with the electromagnetic one obtained from the Liénard-Wiechert fields, is described in an advanced-retarded state space. The first particle moves in the advanced field of the second which in turn is subject to the retarded field of the first. The acceleration terms in the Liénard-Wiechert fields are neglected. In this theory the state space of the system is a twelve-dimensional manifold Σ and the motions are described as integral curves of a vector field that is obtained as the projection of the generator of time translations in space-time. The Poincaré group acts on this manifold Σ in a well-defined way and leaves a symplectic form ω invariant. Thus the set of all possible motions of this system can be studied by the methods of modern symplectic mechanics. In this paper the general method is explained and the set of all bounded motions for two equal rest masses and an attractive force is studied qualitatively and numerically. In the limit (binding energy)/(sum of rest masses) · (speed of light)2 → 0 all the features of the classical Kepler motion are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号