首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

2.
The molecular structures of acetyl fluoride and acetyl iodide have been determined by making use of the average distances obtained in the present study together with the moments of inertia reported in the literature. The large amplitude theory for a molecule with an internal top was used in the joint analysis. The thermal-average values of internuclear distances rg and the bond angles in the zero-point average structure Φz are as follows: rg(C-O) = 1.185 ±0.002 \?rA, rg(C-F) = 1.362± 0.002 Å, rg(C-C) = 1.505±0.002 Å, rg(C-H) = 1.101 ±0.004 Å, Φz(OCF) = 120.7°±0.4°,Φz(CCF) = 110.5° ± 0.5°, Φz(HCH) = 109.3°±0.6° tilt(CH3) = 0.1°±1°, for acetyl fluoride; rg(C=O) = 1.198±0.013 \?rA, rg(C-I) = 2.217±0.009 Å, rg(C-C) = 1.492±0.015 \?rA, rg(C-H) = 1.101 ± 0.004 Å, Φz(OCI) = 119.5°± 0.8°,Φz(CCI) = 111.7°±0.9°, Φz(HCH) = 110.8°±0.8° and tilt(CH3) = 1.7°+5.4° for acetyl iodide. The uncertainties represent the estimated limits of error. The barriers V3 to internal rotation have been reanalyzed making use of the effective moments of inertia of the methyl top estimated on the basis of the large amplitude theory and resulted in 1039 and 1176 cal mol?1 for acetyl fluoride and acetyl iodide, respectively. The structure parameters have been compared with those of other CH3COX (X = Cl, Br, H, CH3) type molecules.  相似文献   

3.
We have measured the vacuum ultraviolet absorption spectra of CH3I in solid and in liquid krypton in the spectral region 2000–1450 Å. In both phases we have observed two Wannier series n(2E32) and n(2E12) up to n = 3. Information has been obtained concerning the features of the conduction band in a liquid rare gas.  相似文献   

4.
The MIPO3Sm(PO3)3(MI = Li, Na, Ag) systems were studied. Differential thermal analysis and X-ray diffraction were used to investigate the liquidus and solidus relations. Three compounds LiSm(PO3)4, NaSm(PO3)4, and AgSm(PO3)4 were obtained which melt incongruently at 1248, 1143, and 1078 K, respectively. These compounds are isomorphous with their homologs LiLn(PO3)4, NaLn(PO3)4, AgLn(PO3)4 (Ln = Ce, La, Nd). They belong to the monoclinic system. The LiSm(PO3)4 unit cell parameters refined by least squares method are a = 16.43(3) Å, b = 7.16(1) Å, c = 9.65(3) Å, β = 125,9°(1), with the space group C2c and Z = 4. NaSm(PO3)4 and AgSm(PO3)4 are isotypic; they cristallize in the P21c space group, Z = 4; their unit cell parameters are, respectively, a = 12.18(1) Å, b = 13.05(1) Å, c = 7.25(5) Å, β = 126,53°(4), a = 12.25(1)A?, b = 13.06(1) Å, c = 7.201(9) Å, β = 126,57°(7). The ir spectra of the last two compounds indicate that these phosphates are chain phosphates.  相似文献   

5.
Well resolved emission spectra have been recorded after dye laser excitation of low-lying vibronic levels in the B(1A1) state of Cl2CS. The effects of substrate pressure, added SF6 and excitation wavelength on the spectra are reported. A Franck-Condon analysis suggests that the excited state CS bond length is 0.5 Å longer than in the ground state.  相似文献   

6.
Single crystals of BaTiF5 and CaTiF5 were obtained by the Czochralski and Bridgman techniques, respectively. The crystal structures were determined by X-ray diffraction; BaTiF5: 14m, a = 15.091(5)Å, c = 7.670(3)Å; CaTiF5: I2c, a = 9.080(4)Å, b = 6.614Å, c = 7.696(3)Å, β = 115.16(3)°. Both structures are characterized by the presence of either branched or straight chains of TiF6 octahedra. BaTiF5 contains the unusual dimeric unit (Ti2F10)4?. Magnetic susceptibility measurements were performed on both compounds in the temperature range 4.2 to 300 K, however, no evidence for magnetic interactions between the Ti3+ moments were observed.  相似文献   

7.
A series of new compounds Ln(GaM2+)O4 and Ln(AlMn2+)O4 having a layer structure were successfully prepared [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M = Mg, Mn, Co, Cu, and Zn]. The synthesis conditions and the unit cell parameters for 23 compounds have been determined. These compounds are isostructural with YbFe2O4 (space group R3m, a = 3.455(1) Å, and c = 25.109(2) Å).  相似文献   

8.
9.
The DMR spectra of single-crystal ND4D3(SeO3)2 have been studied. The principal values and the direction cosines of the field-gradient tensor of deuterons located on three nonequivalent O · · · O hydrogen bonds have been determined. The lengths of hydrogen bonds have been calculated from eQqh values; the deuterons have been located on hydrogen bonds. The comparison with the DMR data of isomorphous compound RbD3(SeO3)2 was made; the influence of NH · · · O hydrogen bonds on the structural parameters O · · · O hydrogen bonds is discussed.  相似文献   

10.
The crystal structure of NbS3 was determined from single-crystal diffractometer data obtained with Mo radiation. The compound is triclinic, space group P1, with: a 4.963(2) Å; b = 6.730(2) Å; c = 9.144(4)Å; α = 90°; β = 97.17(1)°; γ = 90°. The structure is closely related to the ZrSe3 structure type; it shows that the compound can be formulated as Nb4+(S2)2?S2?, in agreement with XPS spectra. The main difference with ZrSe3 is that the Nb atoms are shifted from the mirror planes of the surrounding bicapped trigonal prisms of sulfur atoms to form NbNb pairs (NbNb = 3.04 Å); this causes a doubling of the b axis relative to ZrSe3 and a decrease of the symmetry to triclinic.  相似文献   

11.
Neutron Powder Diffraction Measurements on [Zn(ND3)4]I2 at 1.5 K, 10 K, and 293 K: Hydrogen Bonds and Dynamic of ND3 Molecules Microcrystalline powder of [Zn(ND3)4]I2 can be prepared by the reaction of gaseous NH3 with dry ZnI2 at room temperature within 8 h. Neutron powder diffraction measurements at 1.5 K, 10 K and 293 K were used to localize all hydrogen atoms. Isolated [Zn(ND3)4]2+ tetrahedra are three dimensionally linked with 2- and 3-centre (bent and bifurcated) N? D …? I?-hydrogen bonds. Ammonia molecules are ordered at 1.5 K. Room temperature high thermal displacement parameters for D hint to the fact that NH3-dynamics take place. Lattice parameters 300 K [10 K; 1,5 K]: a = 10.3783(8) Å [10.3407(4) Å; 10.3381(5)], b = 7.5239(6) Å [7.3960(2) Å; 7.3935(4) Å], c = 13.088(1) Å [12.9731(4) Å; 12.9695(6) Å], space group: Pnma.  相似文献   

12.
The crystal structure of a second high-pressure copper vanadate phase, CuVO3(II), has been determined and refined by full-matrix least-squares procedures using automatic diffractometer data to a residual R = 0.042 (Rw = 0.051). The space group is rhombohedral, R3, with hexagonal unit cell a = 4.966(2) and c = 14.084(5) Å [aR = 5.501(2) Å and α = 53.66(3)°]. The structure is the fully ordered ilmenite-type and, on the basis of published magnetic data and the interatomic distances, the valence distribution Cu+V5+O3 is proposed. This represents a unique example of Cu+ in an octahedral environment.  相似文献   

13.
14.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

15.
Sc2O2S is hexagonal, P63mmc, a = 3.5196(4) Å, c = 12.519(2) Å, Z = 2, Dc = 3.807 g cm?3, Dm = 4.014 g cm?3, μ(Mo) = 55.51 cm?1. The final R value is 0.038 for 205 symmetry-independent reflections. This scandium oxysulfide has c = 12.52 Å, twice the value found in rare earth oxysulfides. An La2O2S cell combined with its reflection in a (001) mirror gives the Sc2O2S cell.  相似文献   

16.
The formula of a new compound isolated in the LaOsO system has been established by means of crystal structure determination. There are two La3Os2O10 units in a face-centered monoclinic unit cell (S.G. C2m); a = 7.911(2) Å, b = 7.963(2) Å, c = 6.966(2)Å, β = 115.76(2)°;. For 1082 intensities, collected on an automated single-crystal diffractometer, the final R value was 0.025 after absorption corrections. The structure consists of isolated Os2O10 clusters composed of two edge-shared OsO6 octahedra. These dimeric units are connected together by two types of La3+ ions in eightfold coordination. In view of the OsOs distance inside the pair (2.462 Å), La3Os2O10 provides an example of metal-metal bonding involving a transition metal in a half-integral formal oxidation state of 5.5.  相似文献   

17.
Fluorination of triphenylarsine oxide by aqueous hydrogen fluoride (1–40%) in the absence of glass readily gives triphenylarsine difluoride. When the reaction with dilute (1%) aqueous hydrogen fluoride is carried out in borosilicate glass apparatus, the glass participates in the reaction resulting in the formation of the crystalline 2:1 adduct 2Ph3AsO·HBF4. Crystals of this compound are monoclinic, P21/c, a = 12.926(4), b = 17.819(6), c = 14.994(4) Å, β = 98.97(3)°, Z = 4. The structure contains cations [(Ph3AsO)2H]+ in which O?O is 2.44(2)Å, and anions BF4?.  相似文献   

18.
The synthesis of a second polymorph of ZrI2 has been achieved by a transport reaction between ZrI4 and zirconium metal under a 750850°C gradient in a sealed tantalum tube. The black lath-like crystals produced in the 775°C region occur in space group P21m with a = 6.821(2) Å, b = 3.741(1) Å, c = 14.937(3) Å, β = 95.66(3)°, Z = 4. A total of 669 independent reflections with 2θ ≤ 50° and I > 3σ(I) were measured at room temperature on a four-circle automated diffractometer with monochromatized Mo radiation and were corrected for absorption (μ = 190 cm?1). The structure was solved by direct methods and full-matrix least-squares refinement of all atoms with anisotropic thermal parameters to give final residuals R = 0.064 and Rw = 0.079. This phase is isoelectronic and isostructural with β-MoTe2, a distorted CdI2-type structure in which the zirconium atoms are displaced 0.440 Å from the octahedral centers along a to form infinite zigzag metal chains (dZrZr = 3.182(3) Å) parallel to b. The phase is a diamagnetic semiconductor at room temperature (Eg ~ 0.1 eV).  相似文献   

19.
The system MgOSiO2H2O was investigated at pressures between 40 and 95 kbar and at temperatures between 500 and 1400°C. The reaction products were examined by X-ray, optical and thermal analysis techniques and the density of phase A discovered by Ringwood and Major was also measured. It was found that phase A was hydrated and its chemical formula was H6Mg7Si2O14. When the MgSi ratio of the system is 2, phase A + clinoenstatite, and forsterite are stable at temperatures lower and higher than a boundary curve T (°C) = 10P (kbar), respectively. When the MgSi ratio of the system is 3, phase A + phase D (which is completely different from the phases, A, B and C discovered by Ringwood and Major, and any other known phases of magnesium silicate) and phase D + brucite are stable at temperatures lower and higher than a boundary curve T(°C) = 10P (kbar) + 200. Phase A has approximately an hexagonal symmetry and the space group and the lattice parameters are determined as P63 or P63m and a = 7.866(2) Å and c = 9.600(3) Å, respectively. The measured density is 2.96 ± 0.02 g/cm3. The optical observations show that phase A is biaxial positive crystal with refractive indices α = 1.638 ± 0.001, β = 1.640 ± 0.002, and γ = 1.649 ± 0.001. Some interpretation is given on the inconsistency between the symmetry determined by the X-ray diffraction and the optical observation. The new phase D belongs to the space group P21c with lattice parameters a = 7.914(2)Å, b = 4.752(1) Å, c = 10.350(2) Å and β = 108.71(5)° and is a biaxial crystal with refractive indices α = 1.630 ± 0.002, β = 1.642 ± 0.002 and γ = 1.658 ± 0.001.  相似文献   

20.
The structure of two new oxides KCuTa3O9 and KCuNb3O9 has been solved from X-ray powder data and by electron microscopy. Both compounds are orthorhombic, space group Pnc2 with a ? 8.8 Å, b ? 10.1 Å, and c ? 7.6 Å. Their host lattice is built up from corner-sharing MO6 octahedra (M = Nb, Ta) forming pentagonal tunnels where the K+ ions are located. The copper ions are located in distorted perovskite CaCu3Mn4O12-type cages and exhibit a square planar coordination. The relationships between these oxides and the TTB, HTB, ITB, and Ba0.15WO3 structures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号