首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.  相似文献   

2.
Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3P) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A and 3A potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P (θr) and P (φr) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3P) + H2 (v = 0, j = 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P (θr) and PDDCSs of the 3A PES while the opposite on P (φr) of the 3A potential energy surface.  相似文献   

3.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

4.
Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, D'+ DS(v = 0, j = 0) → D'D + S on a new LZHH potential energy surface (PES) of the adiabatic 3 A electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), P(φr), and P(θr,φr), together with the four commonly used polarization-dependent differential cross sections ((2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), (2π/σ)(dσ21/dωt)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.  相似文献   

5.
Vector correlations of the reaction N(2D)+ H2(X1Σ+g) → NH(a1?)+ H(2S) are studied based on a recent DMBESEC PES for the first excited state of NH2[J. Phys. Chem. A 114 9644(2010)] by using a quasi-classical trajectory method.The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range(10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly,the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr, φr).  相似文献   

6.
尹淑慧  邹静涵  郭明星  李磊  许雪松  高宏  车丽 《中国物理 B》2013,22(2):28201-028201
The stereodynamics of the abstraction reaction H + NeH+(v = 1-3,j = 1,3,5) → H2+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented.  相似文献   

7.
Among many kinds of ways to study the properties of atom and molecule collision, the quasi-classical trajectory(QCT) method is an effective one to investigate the molecular reaction dynamics. QCT calculations have been carried out to investigate the stereodynamics of the reactions F + H2/HD/HT→FH + H/D/T, which proceed on the lowest-lying electronic states of the FH2 system based on the potential energy surface(PES) of the 12A' FH2 ground state. Although the QCT method cannot describe all quantum effects in the process of the reaction, it has unique advantages when facing a three-atoms system or complicated polyatomic systems. Differential cross sections(DCSs) and three angle distribution functions P(θr), P(φr), P(θr, φr) on the PES at the collision of 2.74 kcal/mol have been investigated. The isotope effect becomes more obvious with the reagent molecule H2 turning into HD and HT. P(θr, φr), as the joint probability density function of both polar angles θr and φr, can reflect the properties of three-dimensional dynamic more intuitively.  相似文献   

8.
We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al.(J.Chem.Phys.1997 106 1013).The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-ofmass frame.The product angular distributions of p(θr),p(φr),and p(θr,φr),which reflect the vector correlation,are also presented and discussed.The results indicate that the vector properties are sensitively affected by the vibrational excitation.  相似文献   

9.
The effects of isotope substitution on stereodynamic properties for the reactions C~+ + H_2/HD/HT →CH~+ + H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state CH_2~+ potential energy surface [J. Chem. Phys. 142(2015) 124302]. In the center of mass coordinates applying the quasi classical trajectory method to investigate the orientation and the alignment of the product molecule. Differential cross section and three angle distribution functions P(θ_r), P(ф_r), P(θ_r, ф_r) on the potential energy surface that fixed the collision energy with a value is 40 kcal/mol have been studied. The isotope effect becomes more and more important with the reagent molecules H_2 changing into HD and HT. P(θ_r, ф_r) as the joint probability density function of both polar angles θ_r and ф_r, which can illustrate more detailed dynamics information. The isotope effect is obvious influence on the properties of stereodynamics in the reactions of C~+ + H_2/HD/HT → CH~+ + H/D/T.  相似文献   

10.
In this paper, the stereodynamics of Li + DF → Li F + D reaction is investigated by the quasi-classical trajectory(QCT)method on the ^2A' potential energy surface(PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v = 1–6. The product angular distributions P(θr) and P(φr) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections(PDDCSs), i.e., the PDDCS00 and PDDCS22+are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.  相似文献   

11.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

12.
The stereodynamics of the reaction of Ca + HCl are calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] using quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ )(dσ 00 /dω t ), (2π/σ )(dσ 20 /dωt ), (2π/σ )(dσ 22+ /dωt ), (2π/σ )(dσ 21 /dω t ) and the distributions of P(θ r ), P(φr ), and P(θr ,φr ) are calculated. The results indicate that the rotational polarization of the CaCl product presents different characteristics for the different collision energies, and the effects of the collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.  相似文献   

13.
Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(^3P) + D reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3A' triplet state. The distributions of p(θr) and the distribution of dihedral angel p(φr) as well as p(θr,φr) are calculated. Moreover, four polarization-dependent generalized differential cross sections (PDDCSs) of product are presented in the center-of-mass frame. The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms. Isotopic substitute can cause obviously different effects on the four PDDCSs.  相似文献   

14.
王伟  于永江  赵刚  杨传路 《中国物理 B》2016,25(8):83402-083402
The stereodynamical properties of H(~2S) + NH(v = 0,j = 0,2,5,10)→N(~4S) + H_2 reactions are studied in this paper by using the quasi-classical trajectory(QCT) method with different collision energies on the double many-body expansion(DMBE) potential energy surface(PES)(Poveda L A and Varandas A J C 2005 Phys.Chem.Chem.Phys.7 2867).In a range of collision energy from 2 to 20 kcal/mol,the vibrational rotational quantum numbers of the NH molecules are specifically investigated on v = 0 and j = 0,2,5,10 respectively.The distributions of P(θ_r),P(φ_r),P(θ_r,φ_r),(2π/σ)(dσ_(00)/dω_t)differential cross-section(DCSs) and integral cross-sections(ICSs) are calculated.The ICSs,computed for collision energies from 2 kcal/mol to 20 kcal/mol,for the ground state are in good agreement with the cited data.The results show that the reagent rotational quantum number and initial collision energy both have a significant effect on the distributions of the k-j',the k-k'-j',and the k-k' correlations.In addition,the DCS is found to be susceptible to collision energy,but it is not significantly affected by the rotational excitation of reagent.  相似文献   

15.
Quasi-classical trajectory theory is used to study the reaction of O(3 P) with H 2 (D 2) based on the ground 3 A″ potential energy surface (PES).The reaction cross section of the reaction O+H 2 →OH+H is in excellent agreement with the previous result.Vector correlations,product rotational alignment parameters P 2 (j · k) and several polarizeddependent differential cross sections are further calculated for the reaction.The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES,arising from various collision energies or mass factors.  相似文献   

16.
A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.  相似文献   

17.
Using the isospin- and momentum-dependent hadronic transport model IBUU04, the effects of symmetry energy on the π^-/π^+ ratio are studied. Our investigations are based on the calculations of the ^132 Sn+^124Sn semi-central collisions at beam energies of 400/AMeV, 600/A MeV and 800/A MeV. It is found that both the transverse momentum and kinetic energy distributions of the π^-/π^+ ratio are rather sensitive to the symmetry energy, especially around the Coulomb peaks. The position of the Coulomb peak is shown to be nearly independent of beam energy. The sensitivity of the π^-/π^+ ratio to the symmetry energy decreases as the beam energy increases from 600/A MeV to 800/A MeV.  相似文献   

18.
Quasi-classical trajectory(QCT) studies on the stereodynamics of H + Br O → O + HBr reaction have been performed on the X1A′state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections(PDDCSs),(2π /σ)( dσ00/ dωt)(PDDCS00) and(2π /σ)( dσ20/ dωt)(PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P(φr),are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.  相似文献   

19.
李淑娟  石英  解廷献  金明星 《中国物理 B》2012,21(1):13401-013401
We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al. (J. Chem. Phys. 1997 106 1013). The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-of-mass frame. The product angular distributions of p(θr), p(φr), and p(θr, φr), which reflect the vector correlation, are also presented and discussed. The results indicate that the vector properties are sensitively affected by the vibrational excitation.  相似文献   

20.
The reasonable dissociation limit of the second excited singlet state B1∏ of 7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B1\Pi state are calculated using a symmetry-adapted-cluster configuration--interaction method in full active space. The whole potential energy curve for the B1∏ state is obtained over the internuclear distance ranging from about 0.10nm to 0.54nm, and has a least-square fit to the analytic Murrell--Sorbie function form. The vertical excitation energy is calculated from the ground state to the B1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号