共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force
下载免费PDF全文

Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness. 相似文献
2.
We demonstrate photonically-assisted generation of RF arbitrary waveforms using planar lightwave circuits (PLCs) fabricated on silica-on-silicon. We exploit thermo-optic effects in silica in order to tune the response of the PLC and hence reconfigure the generated waveform. We demonstrate the generation of pulse trains at 40 GHz and 80 GHz with flat-top, Gaussian, and apodized profiles. These results demonstrate the potential for RF arbitrary waveform generation using chip-scale photonic solutions. 相似文献
3.
Xin Zhou Xiaoping Zheng He Wen Hanyi Zhang Yili Guo Bingkun Zhou 《Optics Communications》2011,284(15):3706-3710
We propose and experimentally demonstrate an all optical arbitrary waveform generation by optical frequency comb (OFC) based on cascading intensity modulation. By selecting spectral lines of interest from OFC through optical filters, 10 GHz, 20 GHz, and 60 GHz sinusoidal signals with low phase noise and more complex waveforms, including ultra-short pulse, half-wave cosine, and single frequency modulated MMW signals, are generated easily. 相似文献
4.
Nicolas K. Fontaine 《Optics Communications》2011,284(15):3693-3705
This article presents recent results in the development of optical arbitrary waveform generation (OAWG) technologies based on optical frequency combs and indium phosphide devices. A novel spectral-slice dynamic-OAWG approach and waveform shapers with customized spectral multiplexers and modulators, enable continuous generation of high fidelity optical waveforms accessing bandwidths in excess of 1 THz. We show results for two types integrated waveform shapers, a 100 GHz electrically controlled device with 10 channels spaced at 10 GHz and a 1 THz optically controlled device with 100 channels spaced at 10 GHz. Additionally, we include results from a 640 GHz waveform measurement device with 16 channels and 40 GHz spacing. 相似文献
5.
Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper 总被引:1,自引:0,他引:1
By using tailored pulse sequences from a novel, 1.5-microm direct space-to-time pulse shaper driving a high-speed photodetector, we have achieved, for the first time to our knowledge, millimeter-wave arbitrary waveform generation at center frequencies approaching 50 GHz. By appropriately designing the driving optical pulse sequences, we demonstrate the ability to synthesize strongly phase- and frequency-modulated millimeter-wave electrical signals on a cycle-by-cycle basis. 相似文献
6.
Photonic generation of microwave arbitrary waveforms 总被引:1,自引:0,他引:1
Jianping Yao 《Optics Communications》2011,284(15):3723-3736
In this paper, techniques to generate microwave arbitrary waveforms based on all-fiber solutions are reviewed, with an emphasis on the system architectures based on direct space-to-time pulse shaping, spectral-shaping and wavelength-to-time mapping, temporal pulse shaping, and photonic microwave delay-line filtering. The generation of phase-coded and frequency-chirped microwave waveforms is discussed. The challenges in the implementation of the systems for practical applications are also discussed. 相似文献
7.
The powerful capabilities of electronic digital signal processing and digital-to-analog conversion for implementing waveform generation in an optical transmitter are illustrated by considering pre-compensation for optical filtering, fiber dispersion, and nonlinear modulation dynamics. 相似文献
8.
研究和建议了一种用于产生亚12fs脉冲的基于脉冲波前匹配的LBO超宽带光学参量啁啾脉冲放大器。实验结果表明LBO超宽带光学参量啁啾脉冲放大器可以输出大于60nm(FWHM)的增益光谱带宽,为了利用这种放大器产生转换限制的脉冲输出,给出了一种将超宽带光学参量啁啾脉冲放大器与脉冲波前匹配相结合的方法,这种方法等价于信号光脉冲波前无斜置的放大,克服了超宽带参量啁啾脉冲放大器中由于信号光的脉冲波前斜置而导致很难获得最短压缩脉冲输出的缺陷,从而允许产生转换限制的亚12fs脉冲。 相似文献
9.
A design method is presented for an optical element that shapes an arbitrary collimated beam. The optical element consists
of a pair of diffractive optical elements (DOEs). The outgoing beam is also collimated, and can have any desired intensity
profile. The phase functions of the DOEs are computed by minimizing an appropriate cost function under an energy conservation
constraint. 相似文献
10.
Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup. 相似文献
11.
We theoretically propose a multifunctional photonic differentiation (DIFF) scheme based on phase demodulation using two cascaded linear filters. The photonic D1FF has a diversity of output forms, such as the 1 st order intensity DIFF, the 1 st order field DIFF and its inversion, and the 2nd-order field DIFF, depending on the relative shift between the optical carrier and the filter's resonant notches. As a proof, we also experimentally demonstrate the DIFF diversity using a phase modulator and two delay interferometers (Dis). The calculated average deviation is less than 7% for all DIFF waveforms. Our schemes show the advantages of flexible DIFF functions and forms, which may have different optical applications. For example, high order field differentiators can be used to generate complex temporal waveforms, and intensity differentiators are useful for the ultra-wideband pulse generation. 相似文献
12.
Hongjun Liu Hongying Wang Xiaoli Li Yishan Wang Wei Zhao Chi Ruan 《Optics Communications》2009,282(9):1858-1860
Stacking chirped pulse optical parametric amplification based on a home-built Yb3+-doped mode-locked fiber laser and an all-fiber pulse stacker has been demonstrated. Energic 11 mJ shaped pulses with pulse duration of 2.3 ns and a net total gain of higher than 1.1 × 107 at fluctuation less than 2% rms are achieved by optical parametric amplification pumped by a Q-switched Nd:YAG frequency-doubled laser, which provides a simple and efficient amplification scheme for temporally shaped pulses by stacking chirped pulse. 相似文献
13.
The outstanding phase‐noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high‐repetition‐rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio‐frequency photonics, including applications in high‐performance microwave photonic filtering, ultra‐broadband coherent communications, and radio‐frequency arbitrary waveform generation. 相似文献
14.
A simple optical approach is proposed to obtain millimeter-wave (MMW) pulse signal by the high repetition-rate pulse generation in two cascaded Gires-Tournois Interferometers (GTIs). Compared with single GTI, the cascaded GTIs can optimize the MMW pulse envelope and improve the performance of radio frequency (RF) signal by adjusting the space of cascaded GTIs to change the reflection times of optical propagating signal. The primary influences for the cascaded GTIs on MMW pulse are analyzed theoretically and measured experimentally. It is shown that the good agreement between experimental results and theoretical simulations verifies the feasibility and flexibility of the proposed scheme. 相似文献
15.
《Optik》2014,125(16):4505-4507
We present our experimental demonstration of controlling waveform of a signal pulse by using two beams of continuous wave (CW) generated by stimulated Brillouin scattering (SBS) in optical fibers with different frequencies. Waveform of the signal pulse is modulated in an “all-optical” way according to total input power. This method is only suitable for light pulse with nanosecond width. We provide a new method for controlling light with light. 相似文献
16.
Fontaine NK Scott RP Yang C Geisler DJ Heritage JP Okamoto K Yoo SJ 《Optics letters》2008,33(15):1714-1716
We demonstrate a high-performance optical arbitrary waveform shaper based on a single 10 GHz arrayed-waveguide grating with 64 loopback waveguides and integrated amplitude and phase modulators on each waveguide. The design is compact and self-aligning and allows for bidirectional operation. The device's complex transfer function is manipulated and measured over the full 640 GHz passband. To demonstrate optical arbitrary waveform shaping, high-fidelity 15-line shaped waveforms are measured with cross-correlation frequency-resolved optical gating. 相似文献
17.
Femtosecond optical pulses generated from a synchronously pumped fiber Raman soliton laser (FRASL) have been shown to have large excess noise and high background light (i.e., the pedestal) levels. In this paper, to improve the FRASL, the operation characteristics of the FRASL are investigated both theoretically and experimentally. It is shown that real femtosecond soliton oscillation in the FRASL can be obtained only when the soliton self-frequency shift (SSFS) effect in the fibers is suppressed and proper choices of both the Stokes oscillation wavelength and the pump power level are required for the SSFS suppression in the FRASL. By using a tunable all-fiber Raman ring laser, optical pulses as short as 400 fs with a low white AM noise level of -120 dBc / Hz have been generated from the compact FRASL with SSFS suppression. Based on the theoretical analyses, we propose to use an intracavity saturable absorber to prevent the generation of high-level Stokes background light in the FRASL, and the feasibility of this method is shown by numerical simulations. 相似文献
18.
We propose and experimentally demonstrate a system for the generation of pulses of tunable pulse-width as those required in high spectral efficiency optically routed networks. Pulse narrowing of 500 ps pulses by 90% is accomplished through a SOA based non-linear loop mirror. Optical switching through the SOA loop mirror is used to shape and carve these large pulses (e.g., 500 ps) generated by non-expensive low-frequency optoelectronic components to narrow pulses (e.g., 50 ps). We also calculate the minimum loop size and optimum repetition rate of the original pulse train for the generation of the shorter pulse-width pulse train. 相似文献
19.
20.
本文分析了小信号情况下飞秒脉冲的倍频特性,在非耗尽近似下,得出了飞秒脉冲二次谐波波形及效率的解析解,在时间域内,对一般条件的耦合波方程进行了数值解,分析了相位失配对飞秒脉冲倍频波形及效率的影响。 用0.5mm厚的一类匹配LBO晶体对碰撞锁模激光器产生的80fs超短脉冲进行了腔外倍频实验,实验结果与理论计算符合得很好。 相似文献