首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of iron trichloride (FeC13) on chemical mechanical polishing (CMP) of Ge2Sb2Te5 (GST) film is inves- tigated in this paper. The polishing rate of GST increases from 38 nm/min to 144 nm/min when the FeC13 concentration changes from 0.01 wt% to 0.15 wt%, which is much faster than 20 nm/min for the 1 wt% H2O2-based slurry. This polish- ing rate trends are inversely correlated with the contact angle data of FeCl3-based slurry on the GST film surface. Thus, it is hypothesized that the hydrophilicity of the GST film surface is associated with the polishing rate during CMP. Atomic force microscope (AFM) and optical microscope (OM) are used to characterize the surface quality after CMP. The chemical mechanism is studied by potentiodynamic measurements such as Ecorr and Icorr to analyze chemical reaction between FeCl3 and GST surface. Finally, it is verified that slurry with FeCl3 has no influence on the electrical property of the post-CMP GST film by the resistivity-temperature (RT) tests.  相似文献   

2.
In the paper, chemical mechanical planarization(CMP) of Ge2Sb2Te5(GST) is investigated using IC1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate(RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope(OM) and scanning electron microscope(SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.  相似文献   

3.
In this Letter, new concepts of fluorescence phase-change materials and fluorescence phase-change multilevel recording are proposed. High-contrast fluorescence between the amorphous and crystalline states is achieved in nickel- or bismuth-doped Ge_2Sb_2Te_5 phase-change memory thin films. Opposite phase-selective fluorescence effects are observed when different doping ions are used. The fluorescence intensity is sensitive to the crystallization degree of the films. This characteristic can be applied in reconfigurable multi-state memory and other logic devices. It also has likely applications in display and data visualization.  相似文献   

4.
The relaxation oscillation of the phase change memory(PCM) devices based on the Ge_2Sb_2Te_5 material is investigated by applying square current pulses.The current pulses with different amplitudes could be accurately given by the independently designed current testing system.The relaxation oscillation across the PCM device could be measured using an oscilloscope.The oscillation duration decreases with time,showing an inner link with the shrinking threshold voltage V_(th).However,the relaxation oscillation would not terminate until the remaining voltage V_(on) reaches the holding voltage V_h.This demonstrates that the relaxation oscillation might be controlled by V_(on).The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it,which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.  相似文献   

5.
The impulse response for a phase-change material Ge_2Sb_2Te_5(GST)-based photodetector integrated with a silicon-on-insulator(SOI) waveguide is simulated using finite difference time domain method. The current is calculated by solving the drift-diffusion model for short pulse(~10 fs) excitation for both of the stable phases.Full width at half-maximum values of less than 1 ps are found in the investigation. The crystalline GST has higher 3 dB bandwidth than the amorphous GST at a 1550 nm wavelength with responsivities of 21 A/W and18.5 A/W, respectively, for a 150 nm thick GST layer biased at 2 V. A broad spectrum can be utilized by tuning the device using the phase-change property of material in the near infrared region.  相似文献   

6.
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge_2 Sb_2 Te_5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO_2 capping layer(C-GST and C-GST/SiO_2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO_2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe_(4-n) Ge_n(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.  相似文献   

7.
采用磁控溅射法制备了不同Cu含量的Cu-Ge3Sb2Te5薄膜, 原位测试了薄膜电阻与温度的关系, 并利用X射线衍射仪、透射电镜、透过和拉曼光谱仪分别研究了 Cu-Ge3Sb2Te5薄膜的晶体结构、微结构、禁带宽度及成键情况. 结果表明, Cu-Ge3Sb2Te5薄膜的结晶温度和结晶活化能随着Cu含量的增加而增大, Cu的加入有效改善Ge3Sb2Te5薄膜的热稳定性和10年数据保持力. 随着Cu含量的增加, 非晶态Cu-Ge3Sb2Te5薄膜的禁带宽度逐渐减小. 同时, 拉曼峰从129 cm-1向127 cm-1处移动, 这是由于Cu–Te极性键振动增强的缘故. Cu-Ge3Sb2Te5结晶为均匀、相互嵌套的六方Cu2Te和Ge2Sb2Te5相.  相似文献   

8.
Mg-doped Sb3Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg- doped Sb3Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb3Te. Especially Mg25.19(Sb3Te)74.81 shows higher Tc (~ 190℃) and larger Ea (~ 3.49 eV), which results in a better data retention maintaining for 10 yr at ~ 112 ℃. Moreover Ra/Rc value is also improved. These excellent properties make Mg-Sb-Te material a promising candidate for the phase-change memory (PCM).  相似文献   

9.
高丹  刘波 《物理》2018,47(3):153-161
相变存储器由于具有非易失性、高速度、低功耗等优点被认为是最有可能成为下一代存储器的主流产品之一。然而存储器芯片的良率、密度和操作速度受制于性能最差的单元,因此研究相变存储器的失效机理对于存储器芯片成本的降低以及性能的提升至关重要。文章综述了相变存储器失效机理的研究进展,主要讨论和归纳了电性操作和工艺制程所导致的相变存储器失效模型和失效机理,包括电迁移、热动力学效应、相变应力和热应力、电压极性、结晶引发的偏析、浓度梯度、电极材料以及制造工艺引起的失效。  相似文献   

10.
本文简单回顾了固液相变储热材料发展历程,重点针对纳米多孔定形相变材料,从材料层面的研发设计,到热物理层面的微观限域空间负载、结晶、导热机理,乃至围绕异相/异质匹配提出的显著提升相变蓄传热性能的强化手段进行了总结.同时,指出了目前受制于单一尺度孔径无法兼顾储释热的密度和速率的现状,并探讨在此基础上借助新型多级尺度孔径的骨架材料以突破瓶颈的可能.最后,系统梳理了与之伴随的一系列亟待解决的科学问题、机遇和挑战.  相似文献   

11.
《中国物理 B》2021,30(10):104403-104403
The accelerating effect of natural convection on the melting of phase change material(PCM) has been extensively demonstrated. However, such an influence is directly dependent on the size and shape of domain in which phase change happens, and how to quantitatively describe such an influence is still challenging. On the other hand, the simulation of natural convection process is considerably difficult, involving complex fluid flow in a region changing with time, and is typically not operable in practice. To overcome these obstacles, the present study aims to quantitatively investigate the size effect of natural convection in the melting process of PCM paraffin filled in a square latent heat storage system through experiment and simulation, and ultimately a correlation equation to represent its contribution is proposed. Firstly, the paraffin melting experiment is conducted to validate the two-dimensional finite element model based on the enthalpy method.Subsequently, a comprehensive investigation is performed numerically for various domain sizes. The results show that the melting behavior of paraffin is dominated by the thermal convection. When the melting time exceeds 50 s, a whirlpoor flow caused by natural convection appears in the upper liquid phase region close to the heating wall, and then its influencing range gradually increases to accelerate the melting of paraffin. However, its intensity gradually decreases as the distance between the melting front and the heating wall increases. Besides, it is found that the correlation between the total melting time and the domain size approximately exhibits a power law. When the domain size is less than 2 mm, the accelerating effect of natural convection becomes very weak and can be ignored in practice. Moreover, in order to simplify the complex calculation of natural convection, the equivalent thermal conductivity concept is proposed to include the contribution of natural convection to the total melting time, and an empirical correlation is given for engineering applications.  相似文献   

12.
This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase. The film holds a threshold current about 0.155 mA, which is smaller than the value 0.31 mA of Ge2Sb2Te5 film. Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at ~ 180℃ and changes to hexagonal structure at ~ 270℃. Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method. Data retention of the films was characterized as well.  相似文献   

13.
Unmodified lead zirconate titanate stannate (PZST) system with compositional formula Pb [(Zr0.7Sn0.3)xTi(1−x)]O3, where 0.92≤x≤0.94 has been studied at Morphotropic phase boundary (MPB) for dielectric, ferroelectric and shape memory effect. Field-induced strain measurements are presented to show that ∼0.08% remnant strain pertaining to shape memory can be observed in PZST ceramics at near-exact MPB.  相似文献   

14.
谢子健  胡作启  王宇辉  赵旭 《物理学报》2012,61(10):100201-100201
使用数值仿真方法对相变随机存储器存储单元的RESET操作的多值存储过程进行了研究,建立了三维存储单元模型,用有限元法解Laplace方程及热传导方程以模拟电脉冲作用下的存储单元物性变化过程.计算出单元内相变层的相态分布及单元整体电阻,分析了单元内部尺寸变化对多值存储过程及状态的影响.结果表明,通过精确控制输入电脉冲,相变存储单元能够实现4值存储;多值存储状态受单元内相变层厚度及下电极接触尺寸变化的影响较大;存储状态在80℃的环境温度下均可保持10年以上不失效.  相似文献   

15.
OpticalRecordingPerformanceofIn_(47)Sb_(14)Te_(39)PhaseChangeThinFilmsusing514.5nmWavelengthLaserBeam¥MENLiqiu;JIANGFusong;GAN?..  相似文献   

16.
通过反应溅射的方法,制备了N掺杂的Ge2Sb2Te5(N-GST)薄膜,用作相变存储器的存储介质.研究表明,掺杂的N以GeN的形式存在,不仅束缚了Ge2Sb2Te5 (GST)晶粒的长大也提高了GST的晶化温度和相变温度.利用N-GST薄膜的非晶态、晶态面心立方相和晶态六方相的电阻率差异,能够在同一存储单元中存储三个状态,实现相变存储器的多态存储功能. 关键词: 相变存储器 多态存储 N掺杂 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

17.
采用电子束蒸发Pt和后快速热退火的方法,研究了退火条件对Pt纳米晶的生长特性的影响,结果显示Pt纳米晶的密度随退火温度的升高和退火时间的延长均表现出先增大后减小的趋势.在800℃下退火20 s能得到分布均匀的、密度为30×1011 cm-2的Pt纳米晶.进一步研究了基于Al2O3/Pt纳米晶/HfO2叠层的MOS电容结构的存储效应,表明其在-3—+8 V扫描电压范围下C-V< 关键词: Pt纳米晶 快速热退火 原子层淀积 存储效应  相似文献   

18.
1 Introduction  Opticaldatastoragebymarkingofmicron sizedspotsonadiskwithalaserisanareawithongoingresearchactivity .Opticaldiskdatastoragehasthecombinedadvantagesofhighstoragedensity ,diskremovable,andlargehead diskworkingdistance.Inrecentyears ,write once…  相似文献   

19.
田曼曼  王国祥  沈祥  陈益敏  徐铁峰  戴世勋  聂秋华 《物理学报》2015,64(17):176802-176802
本文采用双靶(ZnSb靶和Ge2Sb2Te5靶)共溅射制备了系列ZnSb掺杂的Ge2Sb2Te5(GST)薄膜. 利用X射线衍射、透射电子显微镜、原位等温/变温电阻测量、X射线光电子能谱等测试研究了薄膜样品的非晶形态、电学及原子成键特性. 利用等温原位电阻测试表明ZnSb掺杂的Ge2Sb2Te5薄膜具有更高的结晶温度. 采用Arrhenius 公式计算发现ZnSb掺杂的Ge2Sb2Te5薄膜的十年数据保持温度均高于传统的Ge2Sb2Te5薄膜的88.9℃. 薄膜在200, 250, 300和350℃ 下退火后的X射线衍射图谱表明ZnSb的掺杂抑制了Ge2Sb2Te5薄膜从fcc态到hex态的转变. 通过对薄膜的光电子能谱和透射电镜分析可知Zn, Sb, Te原子之间键进行重组, 形成Zn–Sb 和Zn–Te 键, 且构成非晶物质存在于晶体周围. 采用相变静态检测仪测试样品的相变行为发现ZnSb掺杂的Ge2Sb2Te5薄膜具有更快的结晶速度. 特别是(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜, 其结晶温度达到250℃, 十年数据保持温度达到130.1℃, 并且在70 mW激光脉冲功率下晶化时间仅~64 ns, 远快于传统Ge2Sb2Te5薄膜的晶化时间~280 ns. 以上结果表明(ZnSb)24.3(Ge2Sb2Te5)75.7薄膜是一种热稳定性好且结晶速度快的相变存储材料.  相似文献   

20.
Phase‐change memory (PCM) is a promising candidate as an artificial synapse. A compact operation method to implement synaptic functions with low power consumption is critical for constructing large‐scale neuromorphic system. Here we propose a square spike strategy for implementing spike‐timing‐dependent plasticity (STDP) in PCM. Based on the heat accumulation effect in PCM, modulating the time intervals of pre‐ and post‐spikes results in different heat generation and dissipation conditions, which lead to various crystalline/ amorphous ratios in the phase change material layer in devices with diverse synaptic weights. Four forms of STDP learning rule are experimentally demonstrated. This study will further promote the development of PCM technology involved in neuromorphic systems. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号