首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interference of optically induced electric and magnetic resonances in high-refractive-index dielectric nanoparticles provides a new approach to control and shape the scattering patterns of light in the field of nanophotonics. In this Letter, we spectrally tune the electric and magnetic resonances by varying the geometry of a single isolated lead telluride(Pb Te) dielectric nanocube. Then, we overlap the electric dipole resonance and magnetic dipole resonance to suppress backward scattering and enhance forward scattering in the resonance region.Furthermore, a broadband unidirectional scattering is achieved by structuring the dielectric nanocuboids as a trimer antenna.  相似文献   

2.
陈娟  张安学  田春明 《物理学报》2012,61(2):24102-024102
本文研究垂直入射条件下水平极化和垂直极化时金属开口谐振环(split ring resonator, SRR)的电磁响应行为. 通过分析这两种情况下的透射系数、介电常数和磁导率, 发现垂直极化时, SRR可以产生电谐振实现负介电常数, 其频段远高于磁谐振频段; 水平极化时, SRR只能产生磁谐振实现负磁导率, 其频段与水平入射时的SRR的磁谐振频段相对应. 通过仿真对此进行了证明, 并对产生电谐振和磁谐振的原因进行了分析.  相似文献   

3.
To achieve efficient light control at subwavelength dimensions, plasmonic and all‐dielectric nanoparticles have been utilized both as a single element as well as in the arrays. Here we study 2D periodic nanoparticle arrays (metasurfaces) that support lattice resonances near the Rayleigh anomaly due to the electric dipole (ED) and magnetic dipole (MD) resonant coupling between the nanoparticles. Silicon and core‐shell particles are considered. Our investigations are carried out using two independent numerical techniques, namely, the finite‐element method and the method of coupled‐dipole equations based on the Green function approach. We numerically demonstrate that choosing of lattice periods independently in each mutual‐perpendicular direction, it is possible to achieve a full overlap between the ED‐lattice resonance and MD resonances of nanoparticles in certain spectral range and to realize the resonant lattice Kerker effect (resonant suppression of the backward scattering or reflection). At the effect conditions, the strong suppression of light reflectance in the structure is appeared due to destructive interference between electromagnetic waves scattered by ED and MD moments of every nanoparticle in the backward direction with respect to the incident light wave. Influence of the array size on the revealed reflectance and transmittance behavior is discussed. The resonant lattice Kerker effect based on the overlap of both ED and MD lattice resonances is also demonstrated.  相似文献   

4.
Yun-Qiao Yin 《中国物理 B》2022,31(5):54101-054101
Manipulating directional electromagnetic scattering plays a crucial role in the realization of exotic optical phenomenon. Here, we show that the spoof plasmonic structure is able to achieve the switching of directional scattering direction on a subwavelength scale by inserting a perfect electric conductor (PEC) cylinder into the hollow of the spoof plasmonic structure. Based on the modal analysis, it is found that the electromagnetic response of the core-shell structure not only is well excited, but also exhibits the directional scattering by interference between the electric and magnetic dipolar resonances. We also discuss the influence of PEC cylinder radius on the performance of the directional scattering. Finally, the active tunable directional scattering is realized by switching between the two states. This work provides a feasible pathway to the subwavelength manipulation of electromagnetic wave. Moreover, it offers a simple method to switch the directional scattering direction. The proposed design approach can be easily applied to digital electromagnetic wave communication and associated applications.  相似文献   

5.
Bin Liu 《中国物理 B》2022,31(5):57802-057802
We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks occur. The bonding hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.  相似文献   

6.
The electric and magnetic resonances of anisotropic broadside-coupled triangular-split-ring resonators are studied for different incident wave excitations. It is shown that the higher order modes exist in both electric and magnetic resonances. It is observed that the incident electric field couples to the magnetic resonance of the designed structure under different excitations. Multiple resonance features due to the anisotropy of the structure are found in the case of different excitations and the nature of these resonances can be regulated as either an electric or a magnetic mode for different frequencies. In this way, a resonant effective permittivity or permeability can be obtained. Hence, controllable properties of the constitutive material parameters (i.e. electric or magnetic resonances, negative values, etc.) can be determined by changing the incident wave excitation.  相似文献   

7.
Dielectric nanoparticles are expected to complement or even replace plasmonic nanoparticles in many optical and optoelectronic applications, because they exhibit small absorption losses and support strong electric and magnetic resonances simultaneously. Dielectric nanoparticles need to be deposited on various substrates in many applications. Understanding the substrate effect on the electromagnetic resonances of dielectric nanoparticles is of great importance for engineering their resonance properties and designing optical devices. In this study, moderate-refractive-index cuprous oxide nanospheres with uniform sizes and shapes are synthesized. The scattering spectra and images of the nanospheres deposited on three types of substrates are analyzed experimentally and theoretically. When supported on indium tin oxide–coated glass slides and Si wafers, the color of the nanospheres varies from blue, cyan, green, yellow, orange and red, covering almost the entire visible region. When deposited on gold films, the electromagnetic resonances of the nanospheres redshift intensively and a new effective magnetic resonance mode appears. The enhanced Raman scattering reveals that large electromagnetic field enhancements are produced in the gap region between the nanosphere and the substrate. The results shed light on the manipulation of the electromagnetic responses of dielectric nanoparticles and the design of dielectric metamaterials in the presence of various substrates.  相似文献   

8.
刘昌宇  解亚明  王治国 《中国物理 B》2017,26(6):67803-067803
Localized surface electromagnetic resonances in spherical nanoparticles with gain are investigated by using the Mie theory. Due to the coupling between the gain and resonances, super scattering phenomenon is raised and the total scattering efficiency is increased by over six orders of magnitude. The dual frequency resonance induced by the electric dipole term of the particle is observed. The distributions of electromagnetic field and the Poynting vector around nanoparticles are provided for better understanding different multipole resonances. Finally, the scattering properties of active spherical nanoparticles are investigated when the sizes of nanoparticles are beyond the quasi-static limit. It is noticed that more highorder multipole resonances can be excited with the increase of the radius. Besides, all resonances dominated by multipole magnetic terms can only appear in dielectric materials.  相似文献   

9.
唐黎明  王玲玲  王宁  严敏 《物理学报》2008,57(5):3203-3211
运用模匹配方法和求解单电子薛定谔方程,来演示非对称T型磁量子结构的电子输运性质.结果表明,结构因子和磁势垒都能改变电子散射模数,电子输运谱因此变得复杂而丰富,散射区域出现了完全局域态和磁边缘态.在特定的结构参数和磁场强度下,能观测到宽谷、尖峰、共振透射和共振反射等电子输运现象,即可以通过调节磁场大小和结构参数来实现波矢过滤. 关键词: 介观体系 电子输运 磁效应  相似文献   

10.
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.  相似文献   

11.
The properties of a high-frequency response in resonant tunneling double-well nanostructures have been considered for various energies of electrons arriving to a structure of electrons, various frequencies of the external electromagnetic field, and various features associated with the interaction of electronic states in neighboring quantum wells in double-well nanostructures. The energy filtration effect that is caused by the breaking of the symmetry of the high-frequency response in double-well nanostructures in a static electric field has been revealed. This effect leads to a sharp increase in the gain under conditions of the quantum amplification regime and opens real prospects of a significant increase in the efficiency of solid amplifying and generating devices based on resonant tunneling double-well nanostructure in the subterahertz and terahertz frequency ranges.  相似文献   

12.
杨一鸣  王甲富  夏颂  柏鹏  李哲  王军  徐卓  屈绍波 《中国物理 B》2011,20(1):14101-014101
Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.  相似文献   

13.
We consider a three-boson system with resonant binary interactions and show that for sufficiently narrow resonances three-body observables depend only on the resonance width and the scattering length. The effect of narrow resonances is qualitatively different from that of wide resonances revealing novel physics of three-body collisions. We calculate the rate of three-body recombination to a weakly bound level and the atom-dimer scattering length and discuss implications for experiments on Bose-Einstein condensates and atom-molecule mixtures near Feshbach resonances.  相似文献   

14.
Using dc excitation to spatially tilt Landau levels, we study resonant acoustic phonon scattering in two-dimensional electron systems. We observe that dc electric field strongly modifies phonon resonances, transforming resistance maxima into minima and back into maxima. Further, phonon resonances are enhanced dramatically in the nonlinear dc response and can be detected even at low temperatures. Most of our observations can be explained in terms of dc-induced (de)tuning of the resonant acoustic phonon scattering and its interplay with inter-Landau level impurity scattering. Finally, we observe a resistance maximum when the electron drift velocity approaches the speed of sound and a dc-induced zero-differential resistance state.  相似文献   

15.
We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of nanostructures having different morphology located in the vicinity of metal nanoclusters (Ag, Au, and Pt). Assignment of surface optical modes is based on calculations performed in the frame of the dielectric continuum model. It is established that SERS by phonons has a resonant character. A maximal enhancement by optical phonons as high as 730 is achieved for CdS nanocrystals in double resonant conditions at the coincidence of laser energy with that of electronic transitions in semiconductor nanocrystals and localized surface plasmon resonance in metal nanoclusters. Even a higher enhancement is observed for SERS by surface optical modes in ZnO nanocrystals (above 104). Surface enhanced Raman scattering is used for studying phonon spectrum in nanocrystal ensembles with an ultra-low areal density on metal plasmonic nanostructures.  相似文献   

16.
Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid‐state physics to biology. Here we experimentally and numerically demonstrate a three‐dimensionsal toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric–toroidal dipole and electric–magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow‐light devices.  相似文献   

17.
樊京  蔡广宇 《物理学报》2010,59(12):8574-8578
数值仿真研究了一种可调谐的双开口谐振环(DSRR)超材料.在平行入射的电磁波激励下,这种DSRR单元可以在不同的频段分别表现出磁谐振和电谐振.当外加电场E与DSRR的双开口平行时,DSRR受激励得到的磁谐振和电谐振强度最大.随着DSRR超材料沿外加磁场H方向顺时针旋转,其磁谐振和电谐振频率基本保持不变,但谐振强度均发生显著下降,同时对应透射相位的突变也逐渐降低.提出的超材料调谐方法只需要简单地旋转材料,而不需要改变原有超材料单元的结构或者增加额外的激励场,极大地简化了可调谐超材料的制备及应用,在电磁开关、相位调制等方面具有潜在的应用.同时,这种简单的方法有希望应用于更高频段的超材料调谐,可以有效地拓展太赫兹频段和光频段超材料的实际应用.  相似文献   

18.
We present a discussion of resonant Raman scattering by optical phonons at the E1 energy gap of group IV and groups III–V compound semiconductor crystals (e.g., Ge and InSb). For allowed scattering by TO and LO phonons, the q-dependent “double resonant” two-band calculation of the Raman tensor may display destructive interference effects when the intermediate electron-hole pairs are uncorrelated. We also discuss the Franz-Keldysh mechanism of resonant electric field induced Raman scattering by LO phonons. The double resonance terms due to this mechanism will, for large electric fields, broaden and have its largest resonance enhancement at the energy gap.  相似文献   

19.
The nonlocal effect on the spontaneous emission of a silver cuboid dimer is investigated using a local analog model. Magnetic as well as electric dipole excitations are introduced to excite different gap modes. The nonlocal response of electric and magnetic modes on various parameters of gap(width and refractive index) are investigated. Unidirectional radiation is achieved by the interaction between electric and magnetic modes in both local and nonlocal models. Compared to local simulations, the resonant wavelength is blue shifted and the spontaneous emission enhancement is weakened in the nonlocal model. The relative shifts of the resonant wavelengths get larger in smaller gaps with a higher refractive index.  相似文献   

20.
Dynamics of the Dirac fermions, in particular the transmission coefficient and the resonant tunneling lifetime are studied across a bilayer graphene electrostatic double barrier structure modulated by an in plane homogeneous electric field. Asymmetric Fano type resonances are noted for the first time in the transmission spectrum of the bilayer graphene nanostructures and are found to be highly sensitive to the direction of incidence of the charge carriers and the applied homogeneous electric field. The effect of the external field on the extended and the evanescent modes is also analysed. Resonant tunneling lifetime is found to be highly anisotropic in nature. The chiral carriers are either accelerated or decelerated by the electric field depending on the energy of the quasi-bound states, the angle of incidence and the magnitude of the applied field. Effects of the external field on the localization of the chiral carriers are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号