首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Inelastic transport through double quantum dot systems with coupling between electronic and vibrational degrees of freedom is examined by means of a master equation approach. The current and the conductance are analyzed for both weak and strong interdot couplings. The results show that an asymmetry in the current-voltage characteristic and appearance of negative differential conductance due to electron-phonon interaction. The influence of temperature on the current is studied and found that increasing temperature gives rise to eliminating the current blockade and, thus, removing the Coulomb diamonds in the conductance spectra.  相似文献   

2.
Photon-assisted electron transport for resonant tunneling has been investigated by using a current formula developed based on the nonequilibrium Green’s function technique. We have studied the external frequency dependence as well as the energy level position dependence for the resonant ac tunneling through the quantum dot coupled to two superconducting reservoirs.  相似文献   

3.
江兆潭 《中国物理 B》2010,19(7):77307-077307
This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green’s function.In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures:a single-QD atom and a double-QD molecule.It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs,the one-,two-,or three-valley conductance pattern can be obtained.Furthermore,it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule.More interestingly,an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.  相似文献   

4.
We report on nonadiabatic transport through a double quantum dot under irradiation of surface acoustic waves generated on chip. At low excitation powers, absorption and emission of single and multiple phonons are observed. At higher power, sequential phonon assisted tunneling processes excite the double dot in a highly nonequilibrium state. The present system is attractive for studying electron-phonon interaction with piezoelectric coupling.  相似文献   

5.
We investigate symmetrically coupled double quantum dots via the hierarchical equations of motion method and propose a novel zero-energy mode(ZEM) at a temperature above the spin singlet–triplet transition temperature. Owing to the resonance of electron quasi-particle and hole quasi-particle, ZEM has a peak at ω = 0 in the spectral density function.We further examine the effect of the magnetic field on the ZEM, where an entanglement of spin and charge has been determined; therefore, the magnetic field can split the ZEM in the spectra.  相似文献   

6.
徐婕  W.Z.Shangguan  詹士昌 《中国物理》2005,14(10):2093-2099
The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron--phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datta S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.  相似文献   

7.
We investigate mesoscopic transport through a system that consists of a central quantum dot (QD) and two single-wall carbon nanotube (SWCN) leads in the presence of a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunnelling current is sensitively related to the spin-flip effect. We present the calculations of charge and spin current components to show the intimate relations to the SWCN leads. Zeeman effect is important when the applied magnetic field is strong enough. The current characteristics are quite different when the source-drain bias is zero (eV=0) and nonzero (eV≠0). The asymmetric peak and valley of spin current versus gate voltage exhibit Fano resonance. Multi-resonant peaks of spin current versus photon energy ħω reflect the structure of CN quantum wires, as well as the resonant photon absorption and emission effect. The matching-mismatching of channels in the CN leads and QD results in novel spin current structure by tuning the frequency.  相似文献   

8.
黄睿  吴绍全  闫从华 《中国物理 B》2010,19(7):77302-077302
Using an equation of motion technique, we report on a theoretical analysis of transport characteristics of a spin-valve system formed by a quantum dot coupled to ferromagnetic leads, whose magnetic moments are oriented at an angle θ with respect to each other, and a mesoscopic ring by the Anderson Hamiltonian. We analyse the density of states of this system, and our results reveal that the density of states show some noticeable characteristics depending on the relative angle θ of magnetic moment M, and the spin-polarised strength P in ferromagnetic leads, and also the magnetic flux Φ and the number of lattice sites NR in the mesoscopic ring. These effects might have some potential applications in spintronics.  相似文献   

9.
The pure spin transport in an entire metallic single-wall carbon-nanotube (SWCN) interacting quantum dot (QD) system is investigated by using non-equilibrium Green's function (NEGF) technique. The novel spin current performance introduced by one constant and one rotating magnetic fields shows the unique four-fold degenerate electron shell structure which exists the SWCN QD sensitively. Spin transport properties can be designed by tuning the orbital and Zeeman configuration in the central resonant region, which are greatly influenced by the Coulomb interaction and the magnetic fields.  相似文献   

10.
Hui Pan  Su-Qing Duan 《Physics letters. A》2009,373(14):1294-1300
AC field-controlled Andreev tunneling through two serially-coupled quantum dots are investigated theoretically by using the nonequilibrium Green's function method. The photon-assisted Andreev tunneling is studied in detail. It is found that the average current depends distinctly on the interdot coupling. In the weak interdot coupling case, the average current versus the gate voltage exhibit negative peaks on the left-hand side and positive peaks on the right-hand side of the Fermi level. However, in the strong interdot coupling case, the current exhibit both negative and positive peaks on each side of the Fermi level. Furthermore, the system can function as an electron pump capable of transporting electrons through the resonant photon-assisted Andreev tunneling.  相似文献   

11.
邓宇翔  颜晓红  唐娜斯 《物理学报》2006,55(4):2027-2032
利用非平衡格林函数方法,研究了量子点环的相干输运性质. 结果表明:与一维量子点阵列 相比,量子点环中的电子出现更多新的准束缚能级. 量子点间耦合的增强会使微分电导振荡 出现退相干现象. 关键词: 量子点 电导  相似文献   

12.
Thermoelectric effects through a serial double quantum dot system weakly coupled to ferromagnetic leads are analyzed. Formal expressions of electrical conductance, thermal conductance, and thermal coefficient are obtained by means of Hubbard operators. The results show that although the thermopower is independent of the polarization of the leads, the figure of merit is reduced by an increase of polarization. The influences of temperature and interdot tunneling on the figure of merit are also investigated, and it is observed that increase of the interdot tunneling strength results in reduction of the figure of merit. The effect of temperature on the thermal conductance is also analyzed.  相似文献   

13.
欧阳仕华  林志恒  游建强 《中国物理 B》2010,19(5):50519-050519
We study shot noise in tunneling current through a double quantum dot connected to two electric leads.We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics.The approach based on the occupation-state basis,despite being widely used in many previous studies,is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots.In contrast,the calculations using the eigenstate basis are valid for an arbitrary interdot coupling.Using realistic model parameters,we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small.Furthermore,properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.  相似文献   

14.
In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary transformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system.  相似文献   

15.
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.  相似文献   

16.
Coupling a quantum system to a bosonic environment always give rise to inelastic processes, which reduce the coherency of the system. We measure energy-dependent rates for inelastic tunneling processes in a fully controllable two-level system of a double quantum dot. The emission and absorption rates are well reproduced by Einstein's coefficients, which relate to the spontaneous emission rate. The inelastic tunneling rate can be comparable to the elastic tunneling rate if the boson occupation number becomes large. In the specific semiconductor double dot, the energy dependence of the inelastic rate suggests that acoustic phonons are coupled to the double dot piezoelectrically.  相似文献   

17.
We investigate mesoscopic spin transport through a quantum dot (QD) responded by a rotating and an oscillating magnetic fields. The rotating magnetic field rotates with the angular frequency 0 around the z-axis with the tilt angle , while the time-oscillating magnetic field is located in the z-axis with the angular frequency . The spin flip is caused by the rotating magnetic field, and it is the major source of spin current. The Zeeman effect is contributed by the two field components, and it is important as the magnetic fields are strong. The oscillating magnetic field takes significant role due to the spin-photon pumping effect, and the spin current can be generated by it even as 00 for the tilt angle 0. The peak and valley structure appears with respect to the frequency of oscillating field. The generation of spin current is companying with charge current. Spin current displays quite different appearance between the cases in the absence of source-drain bias (eV=0) and in the presence of source-drain bias (eV0). The symmetric spin current disappears to form asymmetric spin current with a negative valley and a positive plateau. The charge current is mainly determined by the source-drain bias, photon absorption, and spin-flip effect. This system can be employed as an ac charge-spin current generator, or ac charge-spin field effect transistor.  相似文献   

18.
Feng Z  Sun QF  Wan L  Guo H 《J Phys Condens Matter》2011,23(41):415301
We report the development and an application of a symbolic tool, called SymGF, for analytical derivations of quantum transport properties using the Keldysh nonequilibrium Green's function (NEGF) formalism. The inputs to SymGF are the device Hamiltonian in the second quantized form, the commutation relation of the operators and the truncation rules of the correlators. The outputs of SymGF are the desired NEGF that appear in the transport formula, in terms of the unperturbed Green's function of the device scattering region and its coupling to the device electrodes. For complicated transport analysis involving strong interactions and correlations, SymGF provides significant assistance in analytical derivations. Using this tool, we investigate coherent quantum transport in a double quantum dot system where strong on-site interaction exists in the side-coupled quantum dot. Results obtained by the higher-order approximation and Hartree-Fock approximation are compared. The higher-order approximation reveals Kondo resonance features in the density of states and conductances. Results are compared both qualitatively and quantitatively to the experimental data reported in the literature.  相似文献   

19.
The spin-flip associated transport based on the Anderson model is studied. It is found that the electrons are scattered due to spin-flip effect via the normal, mixed and Kondo channels. The spin-flip scattering via Kondo channel enhances the Kondo resonance peak and causes a slight blue shift. The conductance is suppressed by the spin-flip scattering. This is attributed to the reason that electrons with energy near Fermi level are scattered by Kondo channel.  相似文献   

20.
We study quantum entanglement in a single-level quantum dot in the linear-response regime. The results show, that the maximal quantum value of the conductance 2e2/h not always match the maximal entanglement. The pairwise entanglement between the quantum dot and the nearest atom of the lead is also analyzed by utilizing the Wootters formula for charge and spin degrees of freedom separately. The coexistence of zero concurrence and the maximal conductance is observed for low values of the dot-lead hybridization. Moreover, the pairwise concurrence vanish simultaneously for charge and spin degrees of freedom, when the Kondo resonance is present in the system. The values of a Kondo temperature, corresponding to the zero-concurrence boundary, are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号