首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermiwave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a mannerthat the conductance spectra shows a gap-like structure, two interior dipsstructure and zero bias peak for SWP, OSP, and ESP, respectively. Also, theeffective FS gap (δeff) is a linear and decreasing function of exchange field. The slope of (δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (δeff) to exchange field.  相似文献   

2.
徐茂杰  窦晓鸣 《中国物理 B》2010,19(6):67301-067301
This paper theoretically studies Josephson spin current through triplet superconductor/ferromagnet/triplet superconductor junctions. At the ferromagnet/superconductor interfaces, the ferromagnetic scattering potential gives rise to coupling between the Andreev bound states and lifts their spin degeneracy. These spin-split Andreev states carry the Josephson spin current through the junctions. The generated spin supercurrent can be controlled by the magnetization of a ferromagnetic thin layer and bias voltage across the junctions.  相似文献   

3.
A Josephson current through a half-metallic ferromagnet between two conventional superconductors is theoretically studied. The spin dynamics such as magnon excitation plays a crucial role not only for the conversion between spin-singlet and spin-triplet pairs but also for the formation of the composite state of a triplet Cooper pair and magnon, by which the Josephson current flows between the superconductors. We propose the supercurrent pumping driven by the coherent precession of the magnetization by tuning the microwave frequency to the ferromagnetic resonance frequency in a ferromagnetic Josephson junction.  相似文献   

4.
铜氧化物高温超导、铁基高温超导、重费米子超导和κ-型层状有机超导等超导体的超导态都与磁性有序态相邻,且超导能隙在动量空间一般存在变号.因此,这些超导体的超导机理被认为有别于常规BCS超导中的电子交换声子导致的各向同性s-波配对.在这些非常规超导中,自旋涨落被认为是导致电子形成库珀对的主要起源之一.本文主要以铜基和铁基高...  相似文献   

5.
Y.H. Wu  Z.Y. Wang  R. Shen   《Physics letters. A》2009,373(39):3567-3571
The Josephson effects in the ferromagnetic superconductor junctions of the equal spin pairing symmetry are investigated by a Furusaki–Tsukada-like formula. It is shown that the internal phase difference between the two different anisotropic superconductors plays an important role on the Josephson current. The current is predicted to be an oscillation function of the macroscopic phase difference with the period 2π, π, or π/2 depending on the different orbital pairing symmetries of the superconductors of the junction.  相似文献   

6.
We report a theoretical study on spin transport in the hybrid Josephson junction composed of singlet s-wave and triplet p-wave superconductor. The node of the triplet pair potential is considered perpendicular to the interface of the junction. Based on a symmetry analysis, we predict that there is no net spin density at the interface of the junction but instead a transverse mode-resolved spin density can exist and a nonzero spin current can flow transversely along the interface of the junction. The predictions are numerically demonstrated by means of the lattice Matsubara Green's function method. It is also shown that, when a normal metal is sandwiched in between two superconductors, both spin current and transverse mode-resolved spin density are only residing at two interfaces due to the smearing effect of the multimode transport. Our findings are useful for identifying the pairing symmetry of the p-wave superconductor and generating spin current.  相似文献   

7.
Charge and spin transport in a junction involving two triplet superconductors and a ferromagnetic barrier are studied. We use Bogoliubov-de Gennes wavefunctions to construct the Green's function, from which we obtain the Josephson currents in terms of the Andreev reflection coefficients. We focus on the consequences of a finite barrier width for the occurrence of 0-π transitions and for the spin currents, and examine the appropriateness of the common δ-function approximation for the tunneling region.  相似文献   

8.
We study the Andreev bound states in a Josephson junction between a singlet and a triplet superconductors. Because of the mismatch in the spin symmetries of pairing, the energies of the spin-up and -down quasiparticles are generally different. This results in imbalance of spin populations and net spin accumulation at the junction in equilibrium. This effect can be detected using probes of local magnetic field, such as the scanning SQUID, Hall, and Kerr probes. It may help to identify potential triplet pairing in (TMTSF)2X, Sr2RuO4, and oxypnictides.  相似文献   

9.
《中国物理 B》2021,30(7):77406-077406
The influence of the off-resonant circularly polarized light on the Josephson current in the time-reversal broken superconducting Weyl semimetal junctions is investigated by using the Bogoliubov–de Gennes equation and the transfer matrix approach. Both the zero momentum BCS pairing states and the finite momentum Fulde–Ferrell–Larkin–Ovchinnikov(FFLO) pairing states are considered for the Weyl superconductors. When a circularly polarized light is applied, it is shown that the current phase relation remains unchanged for the BCS pairing with the increasing of incident radiation intensity A_0. For FFLO pairing, the Josephson current exhibits the 0–π transition and periodic oscillation as a function of A_0. The dependence of free energy and critical current on A_0 are also investigated.  相似文献   

10.
ABSTRACT

Pulsed dipolar spectroscopic methods allow nanometer distance measurements between pairs of spin labels. We have proposed a new spin labelling approach, based on the population of a chromophore triplet under light excitation, testing it on a peptide-based spectroscopic ruler and a photosynthetic protein. We have applied a modified Pulsed Electron DOuble Resonance (PELDOR) sequence where the photogeneration of the triplet spin precedes the conventional 4-pulse PELDOR sequence. In this experiment, the triplet-state serves as detection spin while the stable nitroxide is the pump spin. Alternatively, a new method, Laser-Induced Magnetic Dipole spectroscopy (LaserIMD), has been proposed: the nitroxide signal is detected while a time varying laser pulse acts as a pump to generate the triplet state [C. Hintze, D. Bücker, S. Domingo Köhler, G. Jeschke and M. Drescher, J. Phys. Chem. Lett. 7 (12), 2204 (2016)]. For the first time, in this work, we compare the two dipolar techniques performing X-band experiments in the same experimental conditions and deriving analytical expressions for the echo modulation by the density matrix formalism.  相似文献   

11.
We study transport in ferromagnetic-superconductor/normal-metal systems. It is shown that charge and spin currents are pumped from ferromagnetic superconductors into adjacent normal metals by adiabatic changes in the order parameters induced by external electromagnetic fields. Spin and charge pumping identify the symmetry of the superconducting order parameter, e.g., singlet pairing or triplet pairing with opposite or equal spin pairing. Consequences for ferromagnetic-resonance experiments are discussed.  相似文献   

12.
A weak link of two superconductors with s-type pairing through a ferromagnet has been theoretically investigated in the regime of a nonequilibrium spin-dependent distribution of electrons over energy levels in a ferromagnetic interlayer. It has been shown that, under the given conditions, the triplet component of the supercurrent-carrying density of states, which does not participate in the Josephson current transfer under equilibrium and spin-independent nonequilibrium conditions, is involved in the Josephson current transfer through the junction. In this case, the standard supercurrent transferred by the singlet component of the supercurrent-carrying density of states remains unchanged as compared to the case of the equilibrium distribution of electrons in the interlayer. An additional current transferred by the triplet component is controlled by a voltage that controls the specific shape and the degree of nonequilibrium of the electron distribution function in the interlayer. Depending on this controlling parameter, the additional current can substantially amplify or attenuate the standard supercurrent and also switch the junction between 0 and π states.  相似文献   

13.
We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2RuO4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru d‐orbitals and a strong magnetic anisotropy occurs (χ+‐ < χzz) due to spin‐orbit coupling. The latter results mainly from different values of the g‐factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation‐induced Cooper‐pairing scenario in application to Sr2RuO4 we show how p‐wave Cooper‐pairing with line nodes between neighboring RuO2‐planes may occur. We also discuss the open issues in Sr2RuO4 like the influence of magnetic and non‐magnetic impurities on the superconducting and normal state of Sr2RuO4. It is clear that the physics of triplet superconductivity in Sr2RuO4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy‐fermion systems exhibiting spin fluctuations.  相似文献   

14.
The spin current in the Josephson junction as a weak-link (interface) between misoriented triplet superconductors is investigated theoretically for the models of the order parameter in UPt3. Green functions of the system are obtained from the quasiclassical Eilenberger equations. The analytical results for the charge and spin currents are illustrated by numerical calculations for the certain misorientation angles of gap vector of superconductors. As the main result of this paper, it is found that, at some values of the phase difference, at which the charge current is exactly zero, the spin current has its maximum value. Furthermore, it is shown that the origin of spin current is the misorientation between gap vectors of triplet superconductors.  相似文献   

15.
Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transitionmetal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.  相似文献   

16.
We demonstrate that in multilayered superconductor-ferromagnet structures a noncollinear alignment of the magnetizations of different ferromagnetic layers generates a triplet superconducting condensate which is odd in frequency. This triplet condensate coexists in the superconductors with the conventional singlet one but decays very slowly in the ferromagnet, which should lead to a large Josephson effect between the superconductors separated by the ferromagnet. Depending on the mutual direction of the ferromagnetic moments, the Josephson coupling can be both of 0 and of pi type.  相似文献   

17.
Motivated by the recent discovery of superconductivity on the heterointerface LaAlO3/SrTiO3, we theoretically investigate the impurity-induced resonance states with coexisting spin singlet s- and triplet p-wave pairing symmetries by considering the influence of Rashba-type spin-orbit interaction (RSOI). Due to the nodal structure of the mixed gap function, we find single nonmagnetic impurity-induced resonance peaks appearing in the local density of state. We also analyze the evolutions of density of states and local density of states with the weight of triplet pairing component determined by the strength of RSOI, which will be widely observed in thin films of superconductors with surface or interface-induced RSOI, or various noncentrosymmetric superconductors in terms of point contact tunneling and scanning tunneling microscopy, and thus shed light on the admixture of the spin singlet and RSOI-induced triplet superconducting states.  相似文献   

18.
吴义华  王振彦  沈瑞 《物理学报》2009,58(12):8591-8595
计算了等自旋配对超导隧道结中的直流Josephson电流.结果表明,当两侧超导体中配对势的轨道对称性分别属于磁点群D4的A不可约表示和 2E不可约表示的情况下,电流相位关系是I∝sin4φ. 关键词: 超导隧道结 Josephson电流  相似文献   

19.
We study the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state of spin fluctuation mediated superconductivity and focus on the effect of coexisting charge fluctuations. We find that (i) consecutive transitions from singlet pairing to FFLO and further to Sz=1 triplet pairing can generally take place upon increasing the magnetic field when strong charge fluctuations coexist with spin fluctuations and (ii) the enhancement of the charge fluctuations lead to a significant increase of the parity mixing in the FFLO state, where the triplet/singlet component ratio in the gap function can be close to unity. We propose that such consecutive pairing state transition and strong parity mixing in the FFLO state may take place in a quasi-one-dimensional organic superconductor (TMTSF)2X.  相似文献   

20.
In this article, we review the recent theoretical works on the spin fluctuations and superconductivity in iron-based superconductors. Using the fluctuation exchange approximation and multi-orbital tight-binding models, we study the char- acteristics of the spin fluctuations and the symmetries of the superconducting gaps for different iron-based superconductors. We explore the systems with both electron-like and hole-like Fermi surfaces (FS) and the systems with only the electron-like FS. We argue that the spin-fluctuation theories are successful in explaining at least the essential part of the problems, indicating that the spin fluctuation is the common origin of superconductivity in iron-based superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号