首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.  相似文献   

2.
We present the numerical investigation of the optical transmission through a periodic gold nanoslit array embedded in the Kerr type nonlinear medium by using a developed two-dimensional Finite Different Time Domain (FDTD) method. The enhanced transmission in the nonlinear structure is attributed to the collaboration of the surface plasmon resonance and the localized waveguide resonance. We show that, in a certain intensity range, with the increase of the incident intensity, the transmission resonance peaks redshift obviously, and peak values decrease firstly and then increase; with the gold film thickness and the embedded depth becoming larger, transmission resonance peaks of both types redshift significantly, and the peak number, peak value and the half peak width change obviously. The electric fields distributions for different embedded depths of the gold slits at various resonance wavelengths are simulated to illuminate the underlying physical mechanisms. It is expected that these results obtained here will help to design nonlinear subwavelength metallic grating devices.  相似文献   

3.
In this paper we investigated the enhanced transmission and surface plasmon resonance through a thin gold film with a periodic array of subwavelength nanoholes. Both freestanding gold-film nanohole arrays and gold-film nanohole arrays deposited on a gallium arsenide (GaAs) substrate are considered. Periodic arrays of nanoholes exhibit two different surface plasmon resonance features: localized waveguide resonance and the well-recognized photonic crystal resonance. The tangential electric field component Ey is nonzero only in the hole region for a freestanding gold-film nanohole array, but it can exist in the hole region and in the metallic region for a gold-film nanohole array deposited on a GaAs substrate.  相似文献   

4.
We investigate the sensitivity enhancement of surface plasmon resonance (SPR) sensors using planar metallic films closely coupled to nanogratings. The strong coupling between localized surface plasmon resonances (LSPRs) presenting in metallic nanostructures and surface plasmon polaritons (SPPs) propagating at the metallic film surface leads to changes of resonance reflection properties, resulting in enhanced sensitivity of SPR sensors. The effects of thickness of the metallic films, grating period and metal materials on the refractive index sensitivity of the device are investigated. The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU (refractive index unit) using optimized structure parameters. Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.  相似文献   

5.
周静  王鸣  倪海彬  马鑫 《物理学报》2015,64(22):227301-227301
设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在350–2000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.  相似文献   

6.
金孔阵列电介质与金电介质孔阵列的强透射特性   总被引:2,自引:0,他引:2  
杨宏艳  肖功利 《光学学报》2012,32(11):1130002
采用时域有限差分(FDTD)法研究了金膜厚度、电介质折射率及其厚度对金孔阵列电介质与金电介质孔阵列两种结构强透射特性的影响。研究发现这两种结构都具有较好的强透射特性,这表明光与金膜表面自由电子的电荷密度波耦合成表面等离子激元(SPP),对增强透射起到了关键作用。金膜厚度是影响强透射特性的主要因素,其衰减长度为35 nm;而与金膜相邻的电介质膜厚度对强透射特性影响极小。电介质折射率大小对强透射特性影响明显,折射率为1.8时能够获得较好的强透射特性。  相似文献   

7.
Juan Liu  Yongtian Wang  Fang Sun  Jinghui Xie 《Optik》2011,122(9):782-786
The enhanced optical transmission through metallic nanoslit with symmetric or asymmetric surface-relief profile is investigated based on rigorous electromagnetic theory by using the boundary integral method (BIM). Metallic nanoslits with different geometrical structure surfaces: asymmetric sinusoid surface-relief profile and symmetric sinusoid surface-relief profiles, are investigated. The transmission spectra are calculated and the corresponding intensity distributions of magnetic fields at the resonant wavelengths are numerically emulated and illuminated. The numerical results show that there are two transmission peaks - attributed to the nanoslit geometrical structure and the metallic material, respectively, and the normalized transmittance through the conventionally rectangular nanoslit will be enhanced largely when its surface profile is replaced by the smoothly surface-relief shape of the metallic nanoslit. It is indicated that anomalously high transmission is quite sensitive to the surface geometrical profile of the nanoslit and the incident direction of the light wave.  相似文献   

8.
Surface plasmon resonance (SPR) is obtained by exciting the surface plasmon (SP) at the metal and dielectric interface, which can greatly enhance the extraordinary optical transmission (EOT) through a nanoslit milled in the metal film. We present a structure with a 50-nm-wide silver nanoslit for EOT by coupling light into the dielectric interlayer between periodic strips and a metal film. When the period of the metallic strips is equal to the wavelength of the SPR, the transmission efficiency of 187.6 through the nanoslit is enhanced. The metallic strip width over the nanoslit is optimized to improve transmission efficiency, and the maximal efficiency of 204.3 is achieved.  相似文献   

9.
In this paper, a surface plasmon resonance fiber sensor based on gold nano-column array instead of gold film is designed and optimized. The finite element method is used to optimize the diameter of the nano-gold column under the consideration of figure of merit, which relates to the sensitivity, resonance wavelength and resonance intensity. The optimized sensor has 70 nm gold nano-column coated on a side polished single mode fiber. The results show that the average sensitivity reaches 5318 nm/RIU when the environmental refractive index changing from 1.33 to 1.39 RIU, which is much higher than those in the conventional surface plasmon resonance structure. The optimizes design will serve a vital foundation to the fabrication of high performance fiber optic surface plasmon resonance sensors based on nano metallic structure.  相似文献   

10.
本文利用离散点偶极子近似方法(DDA)研究了金和银纳米粒子二维周期阵列的光学性质。研究结果表明二维周期阵列的消光性质及其表面等离子共振(SPR)波长受到阵列内粒子组成材料、粒子形状尺寸、阵列周期和阵列排布方式等因素的影响。对于二维正方阵列,当周期较小时(一般小于300 nm),阵列的共振波长主要取决于粒子组成材料和形状尺寸;当周期与阵列单体的共振波长附近时,阵列的消光谱中会出现极窄且锐的SPR共振峰,峰位只与阵列的周期值相关。改变阵列在平行和垂直于入射光偏振方向的周期,可以方便地调节二维长方阵列的共振峰的峰位和峰宽。  相似文献   

11.
We reported a facile method for preparing self-assembly gold nanochains by using insulin fibrils as biotemplate in aqueous environment. The gold nanochains hybrid nanostructures, which are insulin fibrils coated by gold nanoparticles, can be fabricated by simply reducing the salt precursors using DMAB. By increasing the molar ratio between salt precursors and insulin, denser hybrid nanochains can be obtained, meanwhile the mean diameter of gold nanoparticles is changing from 8 to 10 nm and then to 12 nm. The fabricated gold nanochains hybrid had helix structure, which was confirmed by circular dichroism spectra. The hybrid nanostructures were also investigated by transmission electron microscope, atomic force microscope, Fourier transform infrared spectra, and UV–Visible spectroscopy. As the wire-like structure become denser, the suspensions show color-changing, corresponding to the surface plasmon resonance red shift, which is attributed to the increasing mean size of nanoparticles. Based on the characterizations, a hypothetic mechanism was suggested to describe the formation processing of hybrid gold nanochains.  相似文献   

12.
孙梅  邢素霞  陈媛媛  徐德刚 《光子学报》2014,39(9):1602-1605
利用电子束直写系统和反应离子束刻蚀的方法制作了周期性排列H-形空气槽.样品的参量:金膜的厚度为120 nm,石英基底的厚度0.8 mm(其中有5 nm厚的铬层),样品是由30×30个单个H-形周期排列形成的,总体尺寸为40×40 μm2.每个H-形之间的周期为1.1 μm,H-形的臂长均为500 nm,空气槽的宽度为120 nm.然后用实验的方法测量了在近红外波段的透过曲线,在近红外波段1.6 μm处的透过率约为16.3%,用传输矩阵的方法对H-形空气槽结构进行了理论模拟,实验与理论模拟结果吻合较好.随后研究了当入射光的偏振方向与H-形结构的长轴之间的夹角分别为0°、30°、45°、60°和90°时透过曲线的变化情况.通过实验和理论表明,表面等离子体在这种特殊的结构中仍然存在,并且在光的增强透过起着决定性的作用.  相似文献   

13.
本文设计了金属半圆环/长板阵列,并应用有限元方法研究了该阵列的透射特性。研究表明:由于半圆环与长板之间的电场耦合,在该阵列中产生了法诺共振现象。法诺共振峰强烈地依赖于半圆环/长板的结构参数和相对位置,并且法诺共振峰对周围介质折射率有着较高的灵敏度,最高可以达到862.5 nm/RIU。这些结果有助于设计基于法诺共振的微纳光子学器件。  相似文献   

14.
Transmission properties of plasmonic structure arrays are simulated by finite element method. The array unit is composed of two combined triangular prisms. Results reveal that several resonant modes are found in the transmission spectra, which are due to the resonance of the surface plasmon polariton in the metal slit or to the localized surface plasmon resonance of the combined prisms. The resonant wavelengths can be tuned by changing the structural parameters of the combined prisms. In addition, the resonant modes are sensitive to small refractive index changes of the surrounding media, revealing potential detection applications in nanophotonic systems.  相似文献   

15.
We describe the optical power enhancement on the surface of the 2D (two-dimensional) periodic arrays of convex and concave gold nanostructures for comparing the characteristics of the nanostructures for surface-enhanced Raman spectroscopy (SERS) templates. The optical power enhancement is due to the surface plasmon polaritons, which is calculated by the Finite-Difference Time-Domain (FDTD) method at commercially-available 532 nm pump light. A periodic array of closely-packed gold particles is defined as convex nanostructure, while a periodic array of hemispherical holes, or voids, on gold substrate is defined as concave nanostructure. The peak power enhancement factor, the average power enhancement factor and the activity rate of each structure were compared. The convex nanostructures show a strong enhancement factor in localized hotspots, while the concave nanostructures show not only the peak power enhancement factor comparable to that of convex nanostructures, but also higher spatially-averaged power enhancement factors and activity rates than those observed on the convex nanostructures, meaning that the highly enhanced near-field zone distributes densely on the substrate. We also revealed the dependence of the void diameter on the inter-void distance for the power enhancement in the concave nanostructures system, providing a guideline for the fabrication of the efficient SERS template, which shows a strong power enhancement factor with a high area density.  相似文献   

16.
A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method.Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure.Subsequently,one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte.After optimizing the grating geometric variables of the structure,the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit(nm/RIU)and the figure of merit of 409 RIU-1.The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.  相似文献   

17.
We report on the high-pressure pulsed-laser deposition growth of periodic arrays of free-standing single zinc oxide nanowires with uniform hexagonal arrangement and cross-section with thickness of less than 100 nm. In order to achieve the wire alignment, we prepared an ordered array of catalytic gold seed particles by a nanosphere lithography mask transfer technique using monodisperse spherical polystyrol nanoparticles. These templates were investigated by scanning electron microscopy and atomic force microscopy prior to nanowire growth. X-ray diffraction revealed the epitaxial relationships between the nanostructures and the a-plane sapphire substrate and excellent crystal quality. The optical properties of the ZnO nanowire arrays were measured by cathodoluminescence. PACS 61.82.Rx; 81.05.-t; 81.05.Dz; 81.10.-h  相似文献   

18.
根据倾斜光纤光栅(TFBG)和表面镀金的TFBG传感器测量折射率的基本原理,通过OptiGrating软件模拟了不同浓度溶液下TFBG的透射谱和芯层模与某阶包层模耦合引起的谐振峰,初步得出了TFBG各阶包层模随着外界折射率的增大而向右偏移、在一定的传感范围内中心波长与外界折射率呈线性关系的结论。用小型离子溅射仪对TFBG镀45 nm厚度左右的金膜,并用扫描电镜在微观上观察镀膜效果。通过不同浓度下的NaCl溶液、MgCl2溶液、CaCl2溶液实验,对比研究了裸TFBG和镀金TFBG传感器对溶液折射率的传感特性。从而验证了模拟仿真得出的结论并定量分析得知:镀金后具有表面等离子体共振的TFBG溶液折射率灵敏度大于500 nm·RIU-1,而裸TFBG为2 nm·RIU-1左右,大约提高了200~300倍,且在一定范围内中心波长与溶液折射率的线性拟合度都在0.99以上。  相似文献   

19.
潘庭婷  曹文  邓彩松  王鸣  夏巍  郝辉 《物理学报》2018,67(15):157301-157301
提出了一种X-两环的金属周期性阵列结构,该结构由两个同心圆环包围中心X型构成.利用时域有限差分算法研究了该结构的光学特性.计算表明,当光入射到金属表面时,能够在结构中产生法诺共振现象,并在不同的位置下产生共振谷.同时,共振谷的出现又明显依赖于结构的相对参数(X的臂长、内外环的距离、内外环宽度、周期、环数、X所呈的角度),从而可以通过调节结构的相对参数来实现对结构的共振强度及共振谷位置的调控.另外,进一步分析了在不同环境折射率条件下该结构共振谷的变化规律,可以得出该结构也对周围的环境折射率有着较高的敏感度,最高可达1300 nm/RIU.结果表明,该结构在环境折射率传感器及某些光子器件的应用方面有着潜在的价值.  相似文献   

20.
Electric field distribution is an important parameter for nanostructure arrays in nanobiosensing appfications. It can influence the sensitivity and the resolution of nanobiosensors. We focus on the effect of media on the electric field distribution of a rhombic silver nanostructure array. The finite-difference time-domain algorithm- based numerical calculation method is used to monitor the electric field distribution of the silver nanostructures when the refractive index of the medium around the nanostructure array is changed. The calculated results show that tuning the refractive index of the medium around silver can have a considerable influence on the electric field distribution in the reflection and transmission directions. This effect can be used to increase the extinction efficiency and to improve the resolution of the spectra for nanobiosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号